Fachbereich Mathematik

Prof. Dr. Ulrich Kohlenbach PD Dr. Achim Blumensath Dr. Eyvind Briseid

Sommersemester 2010

Analysis II Übung 5

Aufgabe 1

Sei (X, d) ein metrischer Raum, $A \subseteq X$ abgeschlossen und $B \subseteq X$ offen. Zeigen Sie, daß $A \setminus B$ abgeschlossen ist.

Lösung. Es gilt $X \setminus (A \setminus B) = (X \setminus A) \cup B$. Da sowohl $X \setminus A$ als auch B offen sind, gilt nach §1 Satz 3, daß auch $(X \setminus A) \cup B$ offen ist. Also ist das Komplement $A \setminus B$ abgeschlossen.

Aufgabe 2

Sei X ein metrischer Raum und $K_1, \ldots, K_n \subseteq X$ kompakte Teilräume von X. Zeigen Sie, daß $K_1 \cup \cdots \cup K_n$ kompakt ist.

Lösung. Sei $(U_i)_{i\in I}$ eine offene Überdeckung von $K_1 \cup \cdots \cup K_n$. Dann ist $(U_i)_{i\in I}$ auch eine Überdeckung der K_k . Da jedes K_k kompakt ist, gibt es zu jedem k eine endliche Teilmenge $I_k \subseteq I$, so daß $(U_i)_{i\in I_k}$ eine Überdeckung von K_k ist. Wir setzen $J := I_1 \cup \cdots \cup I_n$. Dann ist $(U_i)_{i\in J}$ eine endliche Überdeckung von $K_1 \cup \cdots \cup K_n$.

Aufgabe 3

Sei X ein metrischer Raum und $Y \subseteq X$. Zeigen Sie, daß

- (a) $Y \setminus \partial Y$ offen,
- (b) $Y \cup \partial Y$ abgeschlossen und
- (c) ∂Y abgeschlossen ist.

(Dies ist §1 Satz 4.)

Lösung. Siehe den Beweis von §1 Satz 4.

Hausaufgaben

Aufgabe 4

Sei (X, d) ein metrischer Raum und $f: X \to \mathbb{R}$ eine Funktion, die im Punkte $x_0 \in X$ stetig ist.

- (i) Zeigen Sie, daß es eine Umgebung U von x_0 gibt, so daß $f(U) \subseteq \mathbb{R}$ beschränkt ist.
- (ii) Angenommen, $f(x_0) > 0$. Zeigen Sie, daß es eine Umgebung U von x_0 gibt, so daß f(x) > 0 für alle $x \in U$ gilt.

Aufgabe 5

Sei X ein metrischer Raum und A, $B \subseteq X$ nicht-leere abgeschlossene Mengen mit $A \cap B = \emptyset$. Zeigen Sie, daß es offene Mengen C, $D \subseteq X$ gibt mit $A \subseteq C$, $B \subseteq D$ und $C \cap D = \emptyset$.

Hinweis. Machen Sie sich eine Skizze. Beachten Sie, daß A und B nicht beschränkt sein müssen. Ein Beispiel in $X=\mathbb{R}^2$ wäre etwa

$$A := \{ (x, y) : y = 0 \}$$
 und $B := \{ (x, y) : xy = 1, x > 0 \}$.

