Mathematik I für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss

1. Übung

$$17:60 = 0.28\overline{3};$$
 $113:88 = 1.284\overline{09}.$

$$2.83 = \frac{283}{100}; \quad 0.\overline{728} = \frac{728}{999}.$$

G2: a)

$$11x = 7x - 4 \Leftrightarrow x = -1$$

Also $L_1 = \{-1\}$, $\sup L_1 = \inf L_1 = -1$.

b)
$$x \ge -\frac{5}{4} \Rightarrow 4x + 5 = 3 \Leftrightarrow x = -\frac{1}{2}; \quad x < -\frac{5}{4} \Rightarrow 4x + 5 = -3 \Leftrightarrow x = -2.$$
 Also $L_2 = \{-2, -\frac{1}{2}\}$, $\sup L_2 = -\frac{1}{2}, \inf L_2 = -2$.

- c) Die Nullstellen sind $x_1 = -3$, $x_2 = 6$, dann $L_3 = \mathbb{R} \setminus (-3, 6)$ ist. sup $L_3 = +\infty$, inf $L_3 = -\infty$.
- d) 1 Fall

$$x \ge -1 \Rightarrow (x+3) + (x+1) < 10 \Leftrightarrow x < 3.$$

Also $L_{4a} = [-1, 3)$.

2 Fall

$$-3 \le x < -1 \Rightarrow (x+3) - (x+1) < 10 \Leftrightarrow 2 < 10.$$

Also $L_{4b} = [-3, -1).$

<u> 3 Fall</u>

$$x < -3 \Rightarrow -(x+3) - (x+1) < 10 \Leftrightarrow -7 < x$$
.

Also $L_{4c} = (-7, -3)$.

Lösungsmenge insgesamt:

$$L_4 = L_{4a} \cup L_{4b} \cup L_{4c} = (-7,3).$$

$$\sup L_4 = 3, \inf L_4 = -7.$$

Setzt man $x \in \mathbb{Q}$, $x \in \mathbb{Z}$ oder $x \in \mathbb{N}$ voraus, so ergeben sich die zugehörige Lösungsmengen durch die Schnittbildung von L_i mit \mathbb{Q} , \mathbb{N} oder \mathbb{Z} .

a.)

$$L_1 \cap \mathbb{Q} = L_1 \cap \mathbb{Z} = L_1, L_1 \cap \mathbb{N} = \emptyset.$$

ъ)

$$L_2 \cap \mathbb{Q} = L_2, L_2 \cap \mathbb{Z} = \{-2\}, L_2 \cap \mathbb{N} = \emptyset.$$

c)

$$L_3 \cap \mathbb{Q} = \{x \in \mathbb{Q} | x \le -3 \text{ und } x \ge 6\},$$

$$L_3 \cap \mathbb{Z} = \{x \in \mathbb{Z} | x \leq -3 \text{ und } x \geq 6\},$$

$$L_3 \cap \mathbb{N} = \{ x \in \mathbb{N} | x \ge 6 \}.$$

$$L_4 \cap \mathbb{Q} = \{ x \in \mathbb{Q} | -7 < x < 3 \},$$

$$L_4 \cap \mathbb{Z} = \{ -6, -5, -4, -3, -2, -1, 0, 1, 2 \},$$

$$L_4 \cap \mathbb{N} = \{ 1, 2 \}.$$

G03: (Vollständige Induktion)

Induktionsanfang bei n=3:

$$3^2 = 9 > 7 = 2 \cdot 3 + 1$$
.

Induktions schritt von n auf n+1:

$$(n+1)^2 = n^2 + 2n + 1 > [Annahme] > 2n + 1 + 2n + 1 = 4n + 2.$$

Wegen 0 > -2n + 1 gilt

$$4n+2 > 4n+2-2n+1 = 2(n+1)+1$$

und somit

$$(n+1)^2 > 2(n+1) + 1.$$

G04: (Folgerung aus den Anordnungsaxiomen und dem Vollständigkeitsaxiom)

i) Das Archimedische Axiom liefert uns für die Zahl p = q-1 eine natürliche Zahl n, sodaß np > K. Wir setzen nun p in die Bernoullische Ungleichung ein:

$$(1+p)^n = q^n > 1 + np > 1 + nK > nK > K$$
.

Hieraus extrahieren wir $q^n > K$

ii) Wir wenden die Aussage i) auf das Inverse $p=q^{-1}$ und $K=\varepsilon^{-1}$ an. Es gilt natürlich p>1 und $K\in\mathbb{R}$.

$$q^{-n} = p^n > K = \varepsilon^{-1}$$

$$\Leftrightarrow q^n < \varepsilon$$

Ist 0 < q < 1, so gibt es zu jedem $\varepsilon > 0$ ein $n \in \mathbb{N}$, sodaß $q^n < \varepsilon$.

Hausaufgaben

 $3:7=0.\overline{428571}; 256:999=0.\overline{256}.$

$$1.1\overline{41} = \frac{1}{10} \cdot 11.\overline{41} = \frac{1}{10}(11 + 0.\overline{41}) = \frac{1}{10}(11 + \frac{41}{99}) = \frac{1130}{990} = \frac{113}{99}$$

Da $\sqrt{2}$ keine rationale Zahl ist, gibt es zu der Differenz $3.1415 - \sqrt{2}$ keinen Bruch.

H2: a)

$$x \ge -4 \Rightarrow \frac{1}{2}(x+6) \ge x+4 \Leftrightarrow x \le -2.$$

Also $L_{1a} = [-4, -2].$

$$x < -4 \Rightarrow \frac{1}{2}(x+6) \ge -(x+4) \Leftrightarrow x \ge -\frac{14}{3}$$

Also $L_{1b}=[-\frac{14}{3},-4)$. Lösungsmenge insgesamt: $L_1=L_{1a}\cup L_{1b}=[-\frac{14}{3},-2]$. inf $L_1=-\frac{14}{3}$, $\sup L_2=-2$.

b) 1 Fall

$$x > 1 \Rightarrow 3 + (x+1) < 2(x-1) \Leftrightarrow x > 6.$$

Also $L_{2a} = (6, \infty)$.

2 Fall

$$-1 \le x < 1 \Rightarrow 3 + (x+1) < -2(x-1) \Leftrightarrow x < -\frac{2}{3}$$

Also $L_{2b} = [-1, -\frac{2}{3})$.

3 Fall

$$x < -1 \Rightarrow 3 - (x+1) < -2(x-1) \Leftrightarrow x < 0.$$

Also $L_{2c} = (-\infty, -1)$.

Lösungsmenge insgesamt:

$$L_2 = L_{2a} \cup L_{2b} \cup L_{2c} = \mathbb{R} \setminus [-\frac{2}{3}, 6].$$

 $\sup L_2 = \infty, \inf L_2 = -\infty.$

H03: (Vollständige Induktion)

Induktionsanfang bei n=1:

$$\sum_{k=0}^{1} x^k = 1 + x = \frac{1 - x^2}{1 - x}.$$

Induktionsschritt von n auf n+1:

$$\sum_{k=0}^{n+1} x^k = \sum_{k=0}^n x^k + x^{n+1} = [Annahme] = \frac{1 - x^{n+1}}{1 - x} + x^{n+1} = \frac{1 - x^{n+2}}{1 - x}.$$

H04: (Archimedisches Axiom)

Wir versuchen einen indirekten Beweis. Angenommen das Gegenteil des Archimedischen Axioms wäre wahr, d.h.,

Es existieren $x \in \mathbb{R}$, $y \in \mathbb{R}$ mit 0 < x, 0 < y, sodaß $n \cdot x \leq y$ für alle $n \in \mathbb{N}$.

Dann wäre y eine obere Schranke der Menge $M:=\{nx\colon n\in\mathbb{N}\}$. Nach dem Vollständigkeitsaxiom besäße sie ein Supremum y_0 . Daß die Menge $\{nx\colon n\in\mathbb{N}\}$ beschränkt sein soll, ferner ein Supremum besitzen soll, entspricht aber nicht unserer Intuition. Formal gehen wir jetzt so vor: Es gilt $(n+1)x=nx+x\in M$ für alle $n\in\mathbb{N}$. Daraus folgt $nx+x\leq y_0$ oder $nx\leq y_0-x$. Es gilt sicherlich $y_0-x< y_0$. Das ist aber ein Widerspruch, da wir angenommen haben, y_0 sei die kleinste oberste Schranke.