Fachbereich Mathematik Prof. Dr. W. Stannat

Dipl. Math. Andreas Bärmann Dipl. Math. Walter Reußwig

WS 09/10 15./18. Januar 2010

9. Übungsblatt zur "Mathematik I f. MB/MPE, WIMB, Mech und CE"

Wiederholungsaufgaben

Aufgabe W9 (Fakultät und Binomialkoeffizient)

- (a) Wiederholen Sie die Begriffe Fakultät und Binomialkoeffizient an folgenden Beispielen: i. 0!, 1!, 2!, 3!, 4! und 5!, wobei $n! = 1 \cdot 2 \cdot \ldots \cdot n$ und 0! = 1
 - ii. $\binom{4}{3}$ und $\binom{7}{3}$, wobei $\binom{n}{k}=\frac{n(n-1)\cdots(n-k+1)}{k!}=\frac{n!}{k!(n-k)!}$.
- (b) Zeigen Sie die Identität $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$.
- (c) Wie lassen sich die Binomialkoeffizienten mit Hilfe des Pascalschen Dreiecks berechnen?

Aufgabe W10 (Binomischer Lehrsatz)

Berechnen Sie mit Hilfe der binomischen Formel

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

die Ausdrücke $\sum_{k=0}^{n} (-1)^k \binom{n}{k}$ und $\sum_{k=0}^{n} \binom{n}{k}$.

Multiple-Choice-Aufgaben

Aufgabe M1 (Orthogonale Vektoren)

Wie	viele der folgenden	vier 1	Aussagen sind	wahr?	Für	orthogonale	Vektoren	$\vec{x}, \vec{y} \in \mathbb{R}^n$	³ gilt	stets:
•	$\vec{x} \cdot \vec{y}^T = 0$	•	$\vec{x}^T \cdot \vec{y} = 0$							
•	$\vec{r} = \vec{u}$		$ \vec{r} ^2 + \vec{\eta} ^2$	$= \ \vec{r} +$	$ \vec{\eta} ^2$					

• $\vec{x} = \vec{y}$

• $\|\vec{x}\|^2 + \|\vec{y}\|^2 = \|\vec{x} + \vec{y}\|^2$.

□ keine

 \square eine

⊠ zwei

 \square drei

Aufgabe M2 (Ebenen und Normalenvektoren)

Für die Schnittmenge S dreier Ebenen in \mathbb{R}^3 gilt:

- Wenn S eine Gerade ist, dann sind zwei der Ebenen parallel.
- Wenn S eine Gerade ist, dann sind die Normalenvektoren der drei Ebenen linear abhängig.
- Wenn zwei Ebenen parallel sind, dann ist S eine Gerade.
- Wenn die Normalenvektoren der drei Ebenen linear abhängig sind, dann ist S eine Gerade.

Gruppenübung

Aufgabe G33 (Geometrische Reihe)

Wiederholen Sie den Begriff Geometrische Reihe. Finden Sie in den folgenden Darstellungen jeweils eine geometrische Reihe wieder, und berechnen Sie gegebenenfalls die Grenzwerte:

(a)
$$\sum_{k=0}^{\infty} \frac{(-1)^k \cdot 5}{3^{k+1}}$$
 (b) $\sum_{k=2}^{\infty} \frac{4 \cdot 2^{k+1}}{3^k}$.

(b)
$$\sum_{k=2}^{\infty} \frac{4 \cdot 2^{k+1}}{3^k}$$
.

Lösung:

(a)
$$\sum_{k=0}^{\infty} \frac{(-1)^k \cdot 5}{3^{k+1}} = \sum_{k=0}^{\infty} \frac{5}{3} \left(-\frac{1}{3} \right)^k = \frac{5}{3} \sum_{k=0}^{\infty} \left(-\frac{1}{3} \right)^k \stackrel{\left| -\frac{1}{3} \right| < 1}{=} \frac{5}{3} \cdot \frac{1}{1 + \frac{1}{3}} = \frac{5}{3} \cdot \frac{3}{4} = \frac{5}{4}.$$

(b)
$$\sum_{k=2}^{\infty} \frac{4 \cdot 2^{k+1}}{3^k} = 8 \sum_{k=2}^{\infty} \left(\frac{2}{3}\right)^k = 8 \left(\sum_{k=0}^{\infty} \left(\frac{2}{3}\right)^k - 1 - \frac{2}{3}\right) \stackrel{\left|\frac{2}{3}\right| < 1}{=} 8 \left(\frac{1}{1 - \frac{2}{3}} - \frac{5}{3}\right) = 8 \cdot \frac{4}{3} = \frac{32}{3}.$$

Aufgabe G34 (Partialbruchzerlegung und Teleskopreihe)

- (a) Berechnen Sie die Koeffizienten a und b in der Darstellung $\frac{1}{k(k+2)} = \frac{a}{k} + \frac{b}{k+2}, k \in \mathbb{N}$
- (b) Bestätigen Sie damit den Grenzwert der Teleskopreihe $\sum_{k=1}^{\infty} \frac{1}{k(k+2)} = \frac{3}{4}$

Lösung:

(a) Es ist $\frac{1}{k(k+2)} = \frac{a}{k} + \frac{b}{k+2} \Leftrightarrow 1 = (k+2)a + kb \Leftrightarrow 1 = (a+b)k + 2a$. Daraus ergibt sich durch Koeffizientenvergleich das lineare Gleichungssystem

$$\begin{array}{rcl} a+b & = & 0 \\ 2a & = & 1 \end{array}$$

mit der Lösung $a = \frac{1}{2}$, $b = -\frac{1}{2}$. Also gilt $\frac{1}{k(k+2)} = \frac{1}{2k} - \frac{1}{2(k+2)} = \frac{1}{2} \left(\frac{1}{k} - \frac{1}{k+2}\right)$.

(b)
$$\sum_{k=1}^{\infty} \frac{1}{k(k+2)} = \sum_{k=1}^{\infty} \frac{1}{2} \left(\frac{1}{k} - \frac{1}{k+2} \right) = \frac{1}{2} \sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{k+2} \right)$$
 Teleskopsumme $\frac{1}{2} \left(1 + \frac{1}{2} \right) = \frac{1}{2} \cdot \frac{3}{2} = \frac{3}{4}$.

Aufgabe G35 (Konvergenz von Reihen)

Untersuchen Sie folgende Reihen auf Konvergenz:

(a)
$$\sum_{k=1}^{\infty} \frac{k^2}{2^k}$$

(b)
$$\sum_{k=1}^{\infty} \left(\frac{k}{k+1}\right)^{2k^2}$$
 (c) $\sum_{k=1}^{\infty} \frac{1}{2k+1}$ (d) $\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k}$ (e) $\sum_{k=1}^{\infty} \frac{k^2}{2+e^k}$.

(c)
$$\sum_{k=1}^{\infty} \frac{1}{2k+1}$$

(d)
$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k}$$

(e)
$$\sum_{k=1}^{\infty} \frac{k^2}{2+e^k}$$
.

Lösung:

(a) Es ist
$$\lim_{n \to \infty} \left| \frac{\frac{(n+1)^2}{2^{n+1}}}{\frac{n^2}{2^n}} \right| = \lim_{n \to \infty} \left(\frac{(n+1)^2}{n^2} \cdot \frac{2^n}{2^{n+1}} \right) = \lim_{n \to \infty} \left(\frac{(n+1)^2}{n^2} \cdot \frac{1}{2} \right) = \lim_{n \to \infty} \frac{(n+1)^2}{2^{n+2}} = \frac{1}{2} < 1.$$

Somit konvergiert die Reihe $\sum_{k=1}^{\infty} \frac{k^2}{2^k}$ nach dem Quotientenkriterium.

(b) Es ist
$$\lim_{n\to\infty} \sqrt[n]{\left(\frac{n}{n+1}\right)^{2n^2}} = \lim_{n\to\infty} \left(\frac{n}{n+1}\right)^{2n} = \lim_{n\to\infty} \left(\frac{n+1}{n}\right)^{-2n} = \lim_{n\to\infty} \left(\left(1+\frac{1}{n}\right)^n\right)^{-2} = \frac{1}{e^2} < 1$$
. Daher konvergiert die Reihe $\sum_{k=1}^{\infty} \left(\frac{k}{k+1}\right)^{2k^2}$ nach dem Wurzelkriterium.

(c) Es ist
$$\sum_{k=1}^{\infty} \frac{1}{2k+1} \ge \sum_{k=1}^{\infty} \frac{1}{2k+k} = \sum_{k=1}^{\infty} \frac{1}{3k} = \frac{1}{3} \sum_{k=1}^{\infty} \frac{1}{k} = +\infty.$$

Somit divergiert die Reihe $\sum_{k=1}^{\infty} \frac{1}{2k+1}$, da die Reihe $\sum_{k=1}^{\infty} \frac{1}{k}$ eine divergente Minorante ist.

- (d) Da $(a_n)_n$ mit $a_n = \frac{1}{n}$ eine positive, monoton fallende Nullfolge ist, konvergiert die Reihe $\sum_{k=1}^{\infty} \frac{(-1)^k}{k}$ nach dem Leibnitzkriterium. Also konvergiert auch die Reihe $\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k}$.
- (e) Es ist $\lim_{n \to \infty} \left| \frac{\frac{(n+1)^2}{2+e^{n+1}}}{\frac{n^2}{2+e^n}} \right| = \lim_{n \to \infty} \left(\frac{(n+1)^2}{n^2} \cdot \frac{2+e^n}{2+e^{n+1}} \right) \le \lim_{n \to \infty} \left(\frac{(n+1)^2}{n^2} \cdot \frac{2e^n}{e^{n+1}} \right) = \frac{2}{e} < 1.$

Daher konvergiert die Reihe $\sum_{k=1}^{\infty} \frac{k^2}{2+e^k}$ nach dem Quotientenkriterium.

Aufgabe G36 (Umkehrfunktionen)

Berechnen Sie für folgende bijektive Funktionen die Umkehrfunktionen sowie die zu den Umkehrfunktionen gehörigen Definitionsbereiche:

(a)
$$f(x) = -2x + 1$$
 (b) $g(x) = \frac{x+1}{x}$

(b)
$$g(x) = \frac{x+1}{x}$$

(c)
$$h(x) = e^{3x} - 4$$
.

Lösung:

- (a) $f: \mathbb{R} \to \mathbb{R}$ mit f(x) = -2x + 1 ist bijektiv, also ist $D_{f^{-1}} = \mathbb{R}$. Es ist $f(x) = y = -2x + 1 \Leftrightarrow x = -\frac{1}{2}y + \frac{1}{2}$, daher ist $f^{-1}(x) = -\frac{1}{2}x + \frac{1}{2}$.
- (b) $g: \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{1\}$ ist bijektiv, also ist $D_{f^{-1}} = \mathbb{R} \setminus \{1\}$. Es ist $g(x) = y = \frac{x+1}{x} \Leftrightarrow xy = x+1 \Leftrightarrow x(y-1) = 1 \Leftrightarrow x = \frac{1}{y-1}$, daher ist $g^{-1}(x) = \frac{1}{x-1}$.
- (c) $h: \mathbb{R} \to (-4, \infty)$ mit $h(x) = e^{3x} 4$ ist bijektiv, daraus folgt $D_{f^{-1}} = (-4, \infty)$. Es ist $h(x) = y = e^{3x} 4 \Leftrightarrow e^{3x} = y + 4 \Leftrightarrow 3x = \ln(y+4) \Leftrightarrow x = \frac{1}{3}\ln(y+4)$, somit ist $h^{-1}(x) = \frac{1}{3}\ln(x+4)$.

Hausübung

Aufgabe H28 (Geometrische Reihe)

(4 Punkte)

Finden Sie in den folgenden Darstellungen eine geometrische Reihe wieder, und berechnen Sie gegebenenfalls die Grenzwerte:

(a)
$$\sum_{k=0}^{\infty} \frac{4^{2k-2} \cdot 7^{-k+1}}{2^{k-2}}$$

(a)
$$\sum_{k=3}^{\infty} \frac{4^{2k-2} \cdot 7^{-k+1}}{2^{k-2}}$$
 (b) $\sum_{k=0}^{\infty} \left(\frac{x^2}{1+x^2}\right)^{3k}$, für $x \in \mathbb{R}$.

Lösung:

(a)
$$\sum_{k=3}^{\infty} \frac{4^{2k-2} \cdot 7^{-k+1}}{2^{k-2}} = \sum_{k=0}^{\infty} \frac{4^{2k+4} \cdot 7^{-k-2}}{2^{k+1}} = \frac{64 \cdot 49}{2} \sum_{k=0}^{\infty} \frac{16^k}{2^{k} \cdot 7^k} = 1568 \sum_{k=0}^{\infty} \left(\frac{8}{7}\right)^{k} \stackrel{\left|\frac{8}{7} \ge 1\right|}{=} + \infty.$$

$$\text{(b)} \ \sum_{k=0}^{\infty} \left(\frac{x^2}{1+x^2}\right)^{3k} = \sum_{k=0}^{\infty} \left(\frac{x^6}{1+3x^2+3x^4+x^6}\right)^{k} \left| \frac{x^6}{1+3x^2+3x^4+x^6} \right| < 1, \ \text{für } x \in \mathbb{R} \\ \frac{1}{1-\frac{x^6}{1+3x^2+3x^4+x^6}} = 1 + \frac{x^6}{1+3x^2+3x^4+x^6}.$$

Aufgabe H29 (Konvergenz von Reihen)

(4 Punkte)

Untersuchen Sie folgende Reihen auf Konvergenz:

(a)
$$\sum_{k=0}^{\infty} \frac{(-3)^k}{k^{10}}$$

(b)
$$\sum_{k=1}^{\infty} \left(1 - \frac{1}{k}\right)^k$$

(c)
$$\sum_{k=1}^{\infty} \frac{1+2k}{1+k^2}$$

(a)
$$\sum_{k=1}^{\infty} \frac{(-3)^k}{k^{10}}$$
 (b) $\sum_{k=1}^{\infty} \left(1 - \frac{1}{k}\right)^k$ (c) $\sum_{k=1}^{\infty} \frac{1+2k}{1+k^2}$ (d) $\sum_{k=0}^{\infty} \frac{\cos(k\pi)}{1+k}$ (e) $\sum_{k=1}^{\infty} \frac{1+3k^4}{2+8k^7}$.

(e)
$$\sum_{k=1}^{\infty} \frac{1+3k^4}{2+8k^7}$$
.

Lösung:

- (a) Da $(a_n)_n$ mit $a_n = \frac{(-3)^n}{n^{10}}$ keine Nullfolge ist, konvergiert die Reihe $\sum_{k=1}^{\infty} \frac{(-3)^k}{k^{10}}$ nicht.
- (b) Es ist $\lim_{n\to\infty} (1-\frac{1}{n})^n = \frac{1}{e}$, also konvergiert die Reihe $\sum_{k=1}^{\infty} (1-\frac{1}{k})^k$ nicht.

- (c) Es ist $\sum_{k=1}^{\infty} \frac{1+2k}{1+k^2} \ge \sum_{k=1}^{\infty} \frac{2k}{k^2+k^2} = \sum_{k=1}^{\infty} \frac{2k}{2k^2} = \sum_{k=1}^{\infty} \frac{1}{k} = +\infty$. Somit divergiert die Reihe $\sum_{k=1}^{\infty} \frac{1+2k}{1+k^2}$, da die Reihe $\sum_{k=1}^{\infty} \frac{1}{k}$ eine divergente Minorante ist.
- (d) Da $(a_n)_n$ mit $a_n = \frac{1}{1+n}$ eine positive, monoton fallende Nullfolge ist, konvergiert die Reihe $\sum_{k=1}^{\infty} \frac{\cos(k\pi)}{1+k} = \sum_{k=1}^{\infty} \frac{(-1)^k}{1+k}$ nach dem Leibnitzkriterium.
- (e) Es ist $\sum_{k=1}^{\infty} \frac{1+3k^4}{2+8k^7} \le \sum_{k=1}^{\infty} \frac{k^4+3k^4}{4k^7} = \sum_{k=1}^{\infty} \frac{4k^4}{4k^7} = \sum_{k=1}^{\infty} \frac{1}{k^3} \le \sum_{k=1}^{\infty} \frac{1}{k^2}$.

Damit konvergiert die Reihe $\sum_{k=1}^{\infty} \frac{1+3k^4}{2+8k^7}$, da die Reihe $\sum_{k=1}^{\infty} \frac{1}{k^2}$ eine konvergente Majorante ist.

Aufgabe H30 (Umkehrfunktionen und Verkettungen)

(4 Punkte)

Gegeben seien die Funktionen

$$f(x) = \frac{1}{x^2}$$
 und $g(x) = x + 3$, definiert auf $D_f = D_g = (0, +\infty)$.

- (a) Skizzieren Sie f und g. Untersuchen Sie die Funktionen auf Monotonie und Injektivität.
- (b) Bestimmen Sie gegebenenfalls die Umkehrfunktionen. Skizzieren Sie diese.
- (c) Bilden Sie die Verkettung $h = f \circ g$. Untersuchen Sie auch diese auf Monotonie und Injektivität, und bilden Sie auf direktem Wege ihre Umkehrfunktion.
- (d) Für die Umkehrfunktion h^{-1} von $h = f \circ g$ gilt $h^{-1} = g^{-1} \circ f^{-1}$. Verifizieren Sie daran Ihr Resultat aus (c).

Lösung:

- (a) Für $x, y \in D_f$ ist $f(x) > f(y) \Leftrightarrow \frac{1}{x^2} > \frac{1}{y^2} \Leftrightarrow y^2 > x^2 \Leftrightarrow y > x$. Also ist f streng monoton fallend und daher injektiv auf D_f . Für $x, y \in D_g$ ist $g(x) > g(y) \Leftrightarrow x+3 > y+3 \Leftrightarrow x > y$. Also ist g streng monoton steigend und daher injektiv auf D_g .
- (b) Da f auf D_f injektiv ist, existiert die Umkehrfunktion f^{-1} auf $D_{f^{-1}} = f(D_f) = (0, +\infty)$. Für $x \in D_f$ ist $f(x) = y = \frac{1}{x^2} \Leftrightarrow x^2 = \frac{1}{y} \Leftrightarrow x = \frac{1}{\sqrt{y}}$. Also ist $f^{-1}(x) = \frac{1}{\sqrt{x}}$ für $x \in D_{f^{-1}}$. Da g auf D_g injektiv ist, existiert die Umkehrfunktion g^{-1} auf $D_{g^{-1}} = g(D_g) = (3, +\infty)$. Für $x \in D_g$ ist $g(x) = y = x + 3 \Leftrightarrow x = y - 3$. Also ist $g^{-1}(x) = x - 3$ für $x \in D_{g^{-1}}$.
- (c) Es ist $h(x) = f(g(x)) = f(x+3) = \frac{1}{(x+3)^2}$ auf $D_h = g^{-1}(D_f) = (0, +\infty)$. Für $x, y \in D_h$ ist $h(x) > h(y) \Leftrightarrow \frac{1}{(x+3)^2} > \frac{1}{(y+3)^2} \Leftrightarrow (y+3)^2 > (x+3)^2 \Leftrightarrow y+3 > x+3 \Leftrightarrow y > x$. Damit ist h streng monoton fallend und somit injektiv auf D_h . Für $x \in D_h$ ist $h(x) = y = \frac{1}{(x+3)^2} \Leftrightarrow (x+3)^2 = \frac{1}{y} \Leftrightarrow x+3 = \frac{1}{\sqrt{y}} \Leftrightarrow x = \frac{1}{\sqrt{y}} 3$. Somit ist $h^{-1}(x) = \frac{1}{\sqrt{x}} 3$ auf $D_{h^{-1}} = h(D_h) = (0, \frac{1}{9})$.
- (d) Es ist $h^{-1}(x) = g^{-1}(f^{-1}(x)) = g^{-1}\left(\frac{1}{\sqrt{x}}\right) = \frac{1}{\sqrt{x}} 3$ für $x \in D_{h^{-1}}$. Dies bestätigt das Ergebnis aus (c).