

WS 2009/10

19.10.2009

Höhere Mathematik 1

1. Übung, Lösungsvorschlag

Gruppenübungen

Aufgabe G1

		A	1	A_2	$A_1 \wedge A_2$	$\neg (A_1 \land A_2)$	$\neg A_1$	$\neg A_2$	$\neg A_1 \lor \neg A_2$
a)		W	7	W	W	f	f	f	f
) w	7	f	f	W	f	W	W
		f		W	f	W	w	f	W
		f		f	f	W	W	W	W
		A	1	A_2	$A_1 \vee A_2$	$\neg (A_1 \lor A_2)$	$\neg A_1$	$\neg A_2$	$\neg A_1 \wedge \neg A_2$
		W	7	W	W	f	f	f	f
b)) w	7	f	w	f	f	w	f
			:	W	w	f	w	f	f
		f		f	f	W	W	w	W
	A_1	A_2	A_{ξ}	3 4	$A_2 \Rightarrow A_3 \mid$	$A_1 \Rightarrow (A_2 \Rightarrow$	A_3	$A_1 \wedge A_2$	$_{2}\mid(A_{1}\wedge A_{2})\Rightarrow A_{3}$
-	W	W	W		W	W		W	W
	W	W	f		f	f		W	f
	W	f	W		W W	w w		f f	W
c)	W	f	f						w
	f	W	W		w	W		f	w
	f	W	f		f	W		f	W
	f	f	W		W	W		f	W
	f	f	f		w	W		f	W

Aufgabe G2

a)
$$1+3+5+7+9 = \sum_{i=0}^{4} (2i+1) = 25$$
.

b)
$$2+4+6+8+10 = \sum_{i=1}^{5} 2i = 30$$
.

c)
$$2+4+8+16 = \sum_{i=1}^{4} 2^i = 30$$
.

d)
$$\frac{1}{2} + 1 + \frac{3}{2} + 2 + \dots + 10 = \sum_{i=1}^{20} \frac{i}{2} = 105.$$

e)
$$1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \dots + \frac{1}{65536} = \sum_{i=0}^{8} \left(\frac{1}{4}\right)^i = \frac{87381}{65536}$$

f)
$$\underbrace{1-1+1-1+\ldots+1-1}_{20 \text{ Summanden}} = \sum_{i=1}^{20} (-1)^{i-1} = 0.$$

g)
$$2 + \frac{2}{3} + \frac{2}{9} + \frac{2}{27} + \dots + \frac{2}{2187} = 2 \cdot \sum_{i=0}^{7} \left(\frac{1}{3}\right)^i = \frac{6560}{2187}$$
.

Aufgabe G3

Induktionsanfang, n = 1.

$$\sum_{k=1}^{1} (2k-1) = 1 = 1^{2}.$$

Induktionsschritt, $n \to n+1$.

$$\sum_{k=1}^{n+1} (2k-1) = \sum_{k=1}^{n} (2k-1) + (2(n+1)-1)$$
$$= n^2 + 2n + 1 = (n+1)^2.$$

Hausübungen

Aufgabe H1

- a) $a \in B$ ist richtig wegen $A \subset B$.
- b) $b \in A$ ist im Allgemeinen nicht richtig. Gegenbeispiel: $A = \{1\}, B = \{1, 2\}, a = 1, b = 2.$
- c) $a \subset B$ ist nicht richtig, weil a keine Menge sondern eine Zahl ist. Gegenbeispiel: $A = \{1\}, B = \{1, 2\}, a = 1, b = 2.$
- d) $A \in B$ ist nicht richtig, weil A keine Zahl sondern eine Menge ist. Gegenbeispiel: $A = \{1\}, B = \{1, 2\}.$
- e) $A \subset C$ ist richtig weil C Obermenge von A.
- f) $C \setminus A \subset C \setminus B$ ist im Allgemeinen nicht richtig, denn für $A = \{1\}, B = \{1, 2\}, C = \{1, 2, 3\}$ gilt $C \setminus A = \{2, 3\}$, aber $C \setminus B = \{3\}$.
- g) $C \setminus B \subset C \setminus A$ ist richtig, denn jedes Element aus $C \setminus B$ liegt nicht in B, also auch nicht in A. Somit muß es in $C \setminus A$ liegen.
- h) $B = B \cap C$ ist richtig, weil B eine Teilmenge von C ist.
- i) $C = B \cup C$ ist richtig, weil B eine Teilmenge von C ist.
- j) $b \in C \setminus A$ ist im Allgemeinen nicht richtig. Gegenbeispiel: $A = \{1\}, B = \{1, 2\}, C = \{1, 2, 3\}, b = 1.$

Aufgabe H2

a) Beweis: Sei n^4 für $n \in \mathbb{N}$ ungerade.

Annahme: n ist gerade. Dann gilt n = 2k für ein $k \in \mathbb{N}_0$. Demnach folgt $n^4 = (2k)^4 = 2(2^3k^4)$. Letzterer Ausdruck ist eine gerade Zahl. Dies ist ein Widerspruch zur Voraussetzung. Also ist die Annahme falsch.

Damit folgt, n ist ungerade.

b) Beweis: Sei $n^3 + 1$ für $n \in \mathbb{N}$ gerade.

Annahme: n ist gerade. Dann können wir n schreiben als n=2k mit $k \in \mathbb{N}_0$. Damit folgt $n^3+1=(2k)^3+1=2(2^2k^3)+1$. Der letzte Ausdruck ist ungerade. Dies widerspricht der Voraussetzung. Also ist die Annahme falsch.

Aufgabe H3 Induktionsanfang, n = 1.

$$\sum_{k=1}^{1} k^2 = 1 = \frac{1 \cdot 3 \cdot 2}{6}.$$

Induktionsschritt, $n \to n+1$.

$$\sum_{k=1}^{n+1} k^2 = \sum_{k=1}^{n} k^2 + (n+1)^2 = \frac{n(2n+1)(n+1)}{6} + (n+1)^2$$
$$= \frac{n+1}{6} ((2n+1)n + 6(n+1))$$
$$= \frac{n+1}{6} (2n^2 + 7n + 6) = \frac{(n+1)(2n+3)(n+2)}{6}.$$