Blatt 1

Übungen zur Vorlesung Nichtglatte Optimierung und Anwendungen

G1. Versagen der exakten Schrittweitensuche bei nichtglatten Problemen

Gegeben sei das Problem

$$\min_{x \in \mathbb{R}^n} f(x)$$

mit $f:\mathbb{R}^n \to \mathbb{R}$ konvex und stetig differenzierbar. Wir betrachten das

Verfahren des steilsten Abstiegs mit exakter Schrittweitensuche:

Wähle $x^0 \in \mathbb{R}^n$. Für $k = 0, 1, 2, \ldots$

- 1. Setze $s^k = -\nabla f(x^k)$ (Richtung des steilsten Abstiegs).
- 2. Ermittle die optimale Schrittweite $\sigma_k \geq 0$ entlang s^k :

$$f(x^k + \sigma_k s^k) = \min_{\sigma \ge 0} f(x^k + \sigma s^k).$$

3. Setze $x^{k+1} = x^k + \sigma_k s^k$.

Zeigen Sie:

a) Das Verfahren erzeugt für die konvexe Funktion $f_1(x) = x_1^2 + 2x_2^2$ zum Startpunkt $x^0 = (2,1)^T$ die Folge

$$x^{2k} = 9^{-k}x^0, \quad x^{2k+1} = 9^{-k}x^1,$$

konvergiert also gegen das Minimum von f_1 . Skizzieren Sie die Höhenlinien von f_1 und die Iterierten x^k .

b) Das Verfahren produziert für die nichtglatte konvexe Zielfunktion

$$f_2(x) := \sqrt{f_1(x)}$$

dieselbe Folge x^k , konvergiert also gegen das Minimum von f_2 .

c) Das Verfahren erzeugt auch für die nichtglatte, stetige, konvexe (kein Nachweis!) Zielfunktion

$$f_3(x) := \begin{cases} f_2(x) & x_1 \ge |x_2|, \\ \frac{1}{\sqrt{3}}(x_1 + 2|x_2|) & x_1 < |x_2|, \end{cases}$$

dieselbe Folge x^k , aber x^k konvergiert nicht gegen ein Minimum von f_3 . Skizzieren Sie die Höhenlinien von f_3 und die Iterierten x^k .

d) Warum ist es also hoffnungslos, das Verfahren des steilsten Abstiegs mit exakter Schrittweitensuche auf nichtglatte Probleme erweitern zu wollen?

Bitte wenden!

G2. Berechnen Sie die folgenden Subdifferentiale:

a)
$$\partial f(0)$$
 für $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} x^2 & x < 0 \\ x & x \ge 0 \end{cases}$.

Veranschaulichen Sie sich Ihr Ergebnis grafisch.

b)
$$\partial f(0)$$
 für $f: \mathbb{R}^n \to \mathbb{R}$, $f(x) = ||x||_2 = \sqrt{x^T x}$.

G3. Epigraph und Subgradienten

Sei $X\subset\mathbb{R}^n$ und $f:X\to\mathbb{R}$ eine Funktion. Der Epigraph von f ist definiert gemäß

$$\operatorname{epi}(f) = \left\{ \begin{pmatrix} x \\ \alpha \end{pmatrix} \; ; \; x \in X, \; \alpha \in \mathbb{R}, \; \alpha \geq f(x) \right\}.$$

- a) Zeigen Sie, dass X und f genau dann konvex sind, wenn epi(f) konvex ist.
- b) Sei $X \subset \mathbb{R}^n$ konvex und offen und $f: X \to \mathbb{R}$ sei konvex. Zeigen Sie, dass $g \in \mathbb{R}^n$ genau dann ein Subgradient von f im Punkt $x \in X$ ist, wenn der Vektor $v = (g^T, -1)^T \in \mathbb{R}^{n+1}$ im Punkt $(x^T, f(x))^T$ senkrecht aus epi(f) herauszeigt, genauer:

$$(g^T, -1)\left(z - {x \choose f(x)}\right) \le 0 \quad \forall \ z \in \operatorname{epi}(f).$$
 (*)

c) Begründen Sie, dass man (*) im folgenden Sinne interpretieren kann: Die Hyperebene

$$H = \{z \in \mathbb{R}^{n+1} : (g^T, -1)z = g^T x - f(x)\} \subset \mathbb{R}^{n+1}$$

durch den Punkt $(x^T, f(x))^T$ mit Normale $v = (g^T, -1)^T$ verläuft überall auf oder unter dem Graphen von f (man sagt: H stützt den Graphen von f (und gleichzeitig den Epigraphen von f) im Punkt $(x^T, f(x))^T$ von unten).

Hausaufgaben:

H1. Negative Subgradienten sind nicht immer Abstiegsrichtungen

Betrachte die Funktion

$$f(x) = \frac{x_1^2}{2} + 2|x_2|.$$

Zeige: Es gilt $g = \binom{1}{2} \in \partial f \binom{1}{0}$, aber s = -g ist keine Abstiegsrichtung von f in $x = \binom{1}{0}$.

H2. Richtungsableitung des Maximums von Funktionen

Sei $U \subset \mathbb{R}^n$ eine offene Menge und seien $f_i: U \to \mathbb{R}$, $i=1,\ldots,m$, stetige Funktionen. Wir betrachten die Funktion $f: U \to \mathbb{R}$, $f(x) = \max_{1 \le i \le m} f_i(x)$. Sei nun $x \in U$ und $I(x) = \{i : f_i(x) = f(x)\}$.

Zeigen Sie: Sind die Funktionen f_i , $i \in I(x)$, richtungsdifferenzierbar in x, dann ist f ebenfalls richtungsdifferenzierbar in x und es gilt

$$f'(x,s) = \max_{i \in I(x)} f'_i(x,s) \quad \forall s \in \mathbb{R}^n.$$