Fachbereich Mathematik

Prof. Dr. Michael Joswig Dipl.-Math. Claudia Möller

Diskrete Mathematik

9. Übungsblatt

Gruppenübungen

Aufgabe G1 Man nehme Bube, Dame, König und As in jeder Farbe und arrangiere die 16 Karten in einem (4×4) -Quadrat, so dass in keiner Zeile, Spalte oder Diagonale derselbe Wert oder dieselbe Farbe zweimal erscheint. Kann erreicht werden, das Rot-Schwarz wie auf einem Schachbrett jeweils abwechselnd erscheint?

Aufgabe G2 Sei $K = \mathbb{F}_q$ der Körper mit q Elementen x_0, \ldots, x_{q-1} , wobei $x_0 = 0$ und $x_1 = 1$. Zeigen Sie, dass die in der Vorlesung definierten $(q \times q)$ -Matrizen A_1, \ldots, A_{q-1} mit $A_k(i,j) := x_i x_k + x_j$ paarweise orthogonale lateinische Quadrate sind.

Aufgabe G3 Zeigen Sie, dass die Anzahl lateinischer Quadrate der Ordnung n mit n =1, 2, 3, 4 genau 1, 2, 12, 576 beträgt. Wieviele lateinische Quadrate der Ordnungen 1, 2, 3 und 4 gibt es, wenn man die Permutationen der Zeilen und Spalten nicht berücksichtigt?

Aufgabe G4 Zeigen Sie: Sei N(n) die Anzahl von paarweise orthogonalen lateinischen Quadraten der Ordnung $n = n_1 n_2$. Dann ist $N(n_1 n_2) \ge \min(N(n_1), N(n_2))$.

Hausübungen

Aufgabe H1 (6 Punkte)

Drei Punkte in einer endlichen projektiven Ebene, die nicht auf einer Geraden liegen, nennen wir *Dreieck*. Zeigen Sie, dass es in der projektiven Ebene $\operatorname{PG}_2\mathbb{F}_q$ über \mathbb{F}_q mit q prim genau $\frac{1}{6}q^3(q+1)(q^2+q+1)$ Dreiecke gibt.

Aufgabe H2 (6 Punkte)

Ein lateinisches Quadrat $A = (a_{ij})$ der Ordnung n heißt zeilenvollständig, wenn jedes geordnete Paar (x, y) verschiedener Zahlen genau einmal an aufeinanderfolgenden Positionen einer Zeile vorkommt, das heißt (a_{ij}, a_{ij+1}) für irgendwelche i, j.

- (a) Beweisen Sie, dass keine zeilenvollständigen lateinischen Quadrate der Ordnung 3 oder 5 existieren. Konstruieren Sie ein zeilenvollständiges lateinisches Quadrat der Ordnung 4.
- (b) Definieren Sie spaltenvollständige lateinische Quadrate analog.
- (c) Sei $K = \mathbb{F}_q$ der Körper mit q Elementen x_1, \ldots, x_q , so dass jedes Nicht-Nullelement von \mathbb{F}_q eindeutig als $x_{i+1} x_i$ für ein bestimmtes $i \in \{1, \ldots, n-1\}$ geschrieben werden kann. Sei A das lateinische Quadrat (mit Zeilen- und Spaltenindizes $0, \ldots, n-1$ statt $1, \ldots, n$) mit den Einträgen $a_{ij} = x_i + x_j$. Zeigen Sie, dass A sowohl zeilen- als auch spaltenvollständig ist.
- (d) Zeigen Sie, dass die Folge

$$0, 1, n-1, 2, n-2, \ldots, \frac{n}{2}-1, \frac{n}{2}+1, \frac{n}{2}$$

für gerades n die Eigenschaft aus (c) erfüllt.

Aufgabe H3 (6 Punkte)

Ein lateinisches $(r \times s)$ -Rechteck ist eine $(r \times s)$ -Matrix $(r \leq s)$ mit Einträgen aus der Menge $\{1, \ldots, n\}$, so dass jede Zahl maximal einmal in jeder Zeile und Spalte vorkommt.

Zeigen Sie, dass jedes lateinische $(r \times n)$ -Rechteck zu einem lateinischen Quadrat der Ordnung n erweitert werden kann. Zum Beispiel ist eine mögliche Erweiterung des lateinischen (2×4) -Rechtecks

 $\begin{pmatrix} 1 & 3 & 2 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$

das lateinische Quadrat $\begin{pmatrix} 1 & 3 & 2 & 4 \\ 2 & 1 & 4 & 3 \\ 3 & 4 & 1 & 2 \\ 4 & 2 & 3 & 1 \end{pmatrix}.$