## 7. Problems for Manifolds

## Problem 28 - Quiz:

a) For given $f \in \mathcal{V}\left(\mathbb{R}^{n}\right)$ find a form $\omega$ on $\mathbb{R}^{n}$ such that $d \omega=\operatorname{div} f e^{1} \wedge \ldots \wedge e^{n}$.
b) Determine $\left\{v \in \mathbb{R}^{2}: e^{1} \wedge e^{2}\left(v, e_{2}\right)=0\right\}$
c) For $w \in \mathbb{R}^{3}$ given determine $V(w):=\left\{v \in \mathbb{R}^{3}: e^{1} \wedge e^{2}(v, w)=0\right\}$
d) Determine $L:=\left\{\omega \in \Lambda^{2} \mathbb{R}^{n}: \omega\left(e_{1}, e_{2}\right)=0\right\}$.
e) Let $\omega \in \Lambda^{k} M$ and $X_{1}, \ldots, X_{k} \in \mathcal{V}(M)$. Which of the following statements is true?

- The value of $d \omega\left(X_{1}, \ldots, X_{k}\right)$ at $p \in M$ depends only on the values of the $X_{i}$ 's at $p$, but not on the way they extend to $M$,
- this value depends only on the value of $\omega$ at $p$ but not of the way the form $\omega$ extends to $M$.


## Problem 29 - $n$-dimensional Cube:

Denote the standard unit cube by $C:=\left\{x \in \mathbb{R}^{n}: 0 \leq x^{1}, \ldots, x^{n} \leq 1\right\}$.
a) Write down the faces of the standard cube (how many are there?).
b) For $1 \leq i \leq n$ let

$$
\omega_{i} \in \Lambda^{n-1} \mathbb{R}^{n}, \quad \omega_{i}:=e^{1} \wedge \ldots \wedge \widehat{e^{i}} \wedge \ldots \wedge e^{n} .
$$

Describe those faces of $C$ such that the form $\omega_{i}$ vanishes on multivectors formed by tangent vectors to the faces.

## Problem 30 - Geometric interpretation of a two-form:

Let $P(v, w)$ be the planar parallelogram in $\mathbb{R}^{3}$, spanned by $v, w \in \mathbb{R}^{3}$. Let $\pi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be projection to the $x y$-plane and let $\eta=e^{1} \wedge e^{2} \in \Lambda^{2} \mathbb{R}^{3}$.
a) Give a formula for the signed area of $\pi(P(v, w))$.
b) Prove that $\eta(v, w)$ agrees with the signed area of $\pi(P(v, w))$.

## Problem 31 - Decomposable and undecomposable forms:

a) Show that in $\mathbb{R}^{3}$ any two-forms $\omega:=v \wedge w$ and $\eta:=r \wedge s$ have a sum $\omega+\eta=a \wedge b$ for some covectors $a, b \in \mathbb{R}^{3^{*}}$.
b) Prove that $e^{1} \wedge e^{2}+e^{3} \wedge e^{4} \in \Lambda^{2} \mathbb{R}^{4}$ cannot be written in the form $v \wedge w$ for $v, w \in \mathbb{R}^{4^{*}}$.
c) Find $\omega \in \Lambda^{2} \mathbb{R}^{4}$ such that $\omega \wedge \omega \neq 0$.

## Problem 32 - Hodge star:

Let $V^{n}$ be a vector space with inner product. With resprect to an orthonormal basis $\left(e^{1}, \ldots, e^{n}\right)$, define an operator

$$
*: \Lambda^{k} V \rightarrow \Lambda^{n-k} V, \quad *\left(e_{i_{1}} \wedge e_{i_{2}} \wedge \ldots \wedge e_{i_{k}}\right)=e_{i_{k+1}} \wedge e_{i_{k+2}} \wedge \ldots \wedge e_{i_{n}},
$$

if $\left\{i_{1}, \cdots i_{k}, i_{k+1} \cdots i_{n}\right\}$ is an even permutation of $\{1,2, \ldots, n\}$.
a) What is $*\left(e^{1} \wedge e^{2}\right)$ in $\mathbb{R}^{3}$ ? What is $* 1$ in $\mathbb{R}^{n}$ ?
b) Prove $* *=(-1)^{k(n-k)}$.
c) Prove that on $\Lambda^{k} V$ we can define an inner product by

