

7. Problems for Manifolds

Problem 28 – Quiz:

- a) For given $f \in \mathcal{V}(\mathbb{R}^n)$ find a form ω on \mathbb{R}^n such that $d\omega = \operatorname{div} f e^1 \wedge \ldots \wedge e^n$.
- b) Determine $\{v \in \mathbb{R}^2 : e^1 \land e^2(v, e_2) = 0\}$
- c) For $w \in \mathbb{R}^3$ given determine $V(w) := \{v \in \mathbb{R}^3 : e^1 \land e^2(v, w) = 0\}$
- d) Determine $L := \{ \omega \in \Lambda^2 \mathbb{R}^n : \omega(e_1, e_2) = 0 \}.$
- e) Let ω ∈ Λ^kM and X₁,..., X_k ∈ V(M). Which of the following statements is true?
 The value of dω(X₁,..., X_k) at p ∈ M depends only on the values of the X_i's at p, but not on the way they extend to M,
 this calue depends only on the value of the calue of the calue

• this value depends only on the value of ω at p but not of the way the form ω extends to M.

Problem 29 – *n*-dimensional Cube:

Denote the standard unit cube by $C := \{x \in \mathbb{R}^n : 0 \le x^1, \dots, x^n \le 1\}.$

- a) Write down the faces of the standard cube (how many are there?).
- b) For $1 \le i \le n$ let

$$\omega_i \in \Lambda^{n-1} \mathbb{R}^n, \qquad \omega_i := e^1 \wedge \ldots \wedge \widehat{e^i} \wedge \ldots \wedge e^n.$$

Describe those faces of C such that the form ω_i vanishes on multivectors formed by tangent vectors to the faces.

Problem 30 – Geometric interpretation of a two-form:

Let P(v, w) be the planar parallelogram in \mathbb{R}^3 , spanned by $v, w \in \mathbb{R}^3$. Let $\pi \colon \mathbb{R}^3 \to \mathbb{R}^2$ be projection to the *xy*-plane and let $\eta = e^1 \wedge e^2 \in \Lambda^2 \mathbb{R}^3$.

- a) Give a formula for the signed area of $\pi(P(v, w))$.
- b) Prove that $\eta(v, w)$ agrees with the signed area of $\pi(P(v, w))$.

Problem 31 – Decomposable and undecomposable forms:

- a) Show that in \mathbb{R}^3 any two-forms $\omega := v \wedge w$ and $\eta := r \wedge s$ have a sum $\omega + \eta = a \wedge b$ for some covectors $a, b \in \mathbb{R}^{3^*}$.
- b) Prove that $e^1 \wedge e^2 + e^3 \wedge e^4 \in \Lambda^2 \mathbb{R}^4$ cannot be written in the form $v \wedge w$ for $v, w \in \mathbb{R}^{4^*}$.
- c) Find $\omega \in \Lambda^2 \mathbb{R}^4$ such that $\omega \wedge \omega \neq 0$.

Problem 32 – Hodge star:

Let V^n be a vector space with inner product. With respect to an orthonormal basis (e^1, \ldots, e^n) , define an operator

$$*: \Lambda^k V \to \Lambda^{n-k} V, \qquad *(e_{i_1} \wedge e_{i_2} \wedge \ldots \wedge e_{i_k}) = e_{i_{k+1}} \wedge e_{i_{k+2}} \wedge \ldots \wedge e_{i_n},$$

if $\{i_1, \dots, i_k, i_{k+1}, \dots, i_n\}$ is an even permutation of $\{1, 2, \dots, n\}$.

- a) What is $*(e^1 \wedge e^2)$ in \mathbb{R}^3 ? What is *1 in \mathbb{R}^n ?
- b) Prove $** = (-1)^{k(n-k)}$.
- c) Prove that on $\Lambda^k V$ we can define an inner product by

$$\langle v, w \rangle := *(w \wedge *v)$$