6. Problems for Manifolds

Problem 24 - Flows and Lie brackets:
Consider $X(u, v):=(0, u)$ on \mathbb{R}^{2}.
a) $\operatorname{Plot} X(u, v)$.
b) Find a chart $(x, U): U \rightarrow \mathbb{R}^{2}$ around the point $(1,0)$ such that $X=e_{1}$, as in Lemma 26. Formulate this first as a condition on the differential $d x: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. What is the maximal choice of U ?
c) If you like: Discuss all choices for x. Remember to verify that x is a diffeomorphism.
d) Moreover, let $Y(u, v):=(1,0)$, see the example in class. Verify Lemma 27 at the point $(1,0)$.

Problem 25 - Cylindrical coordinates:
On $\Omega:=\mathbb{R}^{3} \backslash\{(0,0, w): w \in \mathbb{R}\}$ consider the vector fields $X(u, v):=\frac{1}{\sqrt{u^{2}+v^{2}}}(u, v, 0)$ and $Y(u, v):=J(u, v):=(-v, u, 0)$.
a) Plot X and Y. Can you see what $[X, Y]$ is?
b) Verify they span an involutive distribution Δ.
c) Pick a point in Ω and determine a chart (x, U) as in the Frobenius Theorem 31.

Problem 26 - Skew symmetric bilinear forms:

The purpose of this problem is to prepare Thursday's class.
a) Give an example of a skew-symmetric bilinear form, $b: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$, that is, $b(v, w)=$ $-b(w, v)$ for all $v, w \in \mathbb{R}^{n}$.
b) Show that $b(v, v)=0$ for all $v \in \mathbb{R}^{n}$ is equivalent to b skew-symmetric.
c) What is the dimension of the space of skew-symmetric forms $B(n)$? Exhibit a basis for $B(n)$, for instance in terms of the basis $e^{i}=\left\langle., e_{i}\right\rangle$ of the dual space.
d) Can you find a projection which maps an arbitrary bilinear form to the skew-symmetric forms? What are the reasonable properties to ask for?

Problem 27 - Non-integrable distribution:

Check explicitely that $X(p)=e_{1}$ and $Y(p)=e_{2}+p^{1} e_{3}$ is non-integrable.

