

# 6. Problems for Manifolds

## Problem 24 – Flows and Lie brackets:

Consider X(u, v) := (0, u) on  $\mathbb{R}^2$ .

- a) Plot X(u, v).
- b) Find a chart  $(x, U): U \to \mathbb{R}^2$  around the point (1, 0) such that  $X = e_1$ , as in Lemma 26. Formulate this first as a condition on the differential  $dx: \mathbb{R}^2 \to \mathbb{R}^2$ . What is the maximal choice of U?
- c) If you like: Discuss all choices for x. Remember to verify that x is a diffeomorphism.
- d) Moreover, let Y(u, v) := (1, 0), see the example in class. Verify Lemma 27 at the point (1, 0).

## Problem 25 – Cylindrical coordinates:

On  $\Omega := \mathbb{R}^3 \setminus \{(0,0,w) : w \in \mathbb{R}\}$  consider the vector fields  $X(u,v) := \frac{1}{\sqrt{u^2 + v^2}}(u,v,0)$  and Y(u,v) := J(u,v) := (-v,u,0).

- a) Plot X and Y. Can you see what [X, Y] is?
- b) Verify they span an involutive distribution  $\Delta$ .
- c) Pick a point in  $\Omega$  and determine a chart (x, U) as in the Frobenius Theorem 31.

## Problem 26 – Skew symmetric bilinear forms:

The purpose of this problem is to prepare Thursday's class.

- a) Give an example of a skew-symmetric bilinear form,  $b \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ , that is, b(v, w) = -b(w, v) for all  $v, w \in \mathbb{R}^n$ .
- b) Show that b(v, v) = 0 for all  $v \in \mathbb{R}^n$  is equivalent to b skew-symmetric.
- c) What is the dimension of the space of skew-symmetric forms B(n)? Exhibit a basis for B(n), for instance in terms of the basis  $e^i = \langle ., e_i \rangle$  of the dual space.
- d) Can you find a projection which maps an arbitrary bilinear form to the skew-symmetric forms? What are the reasonable properties to ask for?

## Problem 27 – Non-integrable distribution:

Check explicitly that  $X(p) = e_1$  and  $Y(p) = e_2 + p^1 e_3$  is non-integrable.