5. Problems for Manifolds

Problem 17 - Quiz:

Recall the following definitions:

- tangent vector • vector field • differentiable map and differential • immersion and embedding (is an injective immersion an embedding?) • submanifold

Problem 18 - Lie bracket of vector fields:
Prove $[f X, g Y]=f g[X, Y]+f\left(\partial_{X} g\right) Y-g\left(\partial_{Y} f\right) X$ for all $f, g \in \mathcal{D}(M), X, Y \in \mathcal{V}(M)$.
Problem 19 - Expansion of a flow:
For $X \in \mathcal{V}\left(\mathbb{R}^{n}\right)$ verify the expansion $\varphi_{t}(p)=p+t X(p)+O\left(t^{2}\right)$ at $t=0$.

Problem 20 - Lie subalgebras:

a) An $n \times n$ matrix is skew-Hermitian if $t \bar{A}=-A$. Prove that the set of skew-Hermitian matrices is closed under $[A, B]=A B-B A$.
b) Find another such matrix algebra.

Hint: What is the trace of $[A, B]$?

Problem 21 - Determination of flows:

Determine the flow of the following vector fields on \mathbb{R}^{2} :
a) $X=x e_{1}+2 y e_{2}$,
b) $Y=x e_{1}-y e_{2}$,
c) $Z=x e_{2}+y e_{1}$

Problem 22 - Flows on compact manifolds:

Recall that a flow φ of a vector field $X \in \mathcal{V}(M)$ is global if $\varphi(t, p)$ exists for all $t \in \mathbb{R}$ and $p \in M$. Prove that φ is global if M is compact and $X \in \mathcal{V}(M)$.
Hint: On a compact manifold, each sequence has a convergent subsequence.
Problem 23 - Index of a vector field on a surface:
Suppose $X \in \mathcal{V}\left(\mathbb{R}^{2}\right)$ has only a discrete set of zeros Z. For any differentiable loop $c(t)$ in $\mathbb{R}^{2} \backslash Z$, let $\varphi(t)=\angle(X(c(t), E(c(t))$ be continuous, and define the number $i(X, c):=$ $\frac{1}{2 \pi} \int \varphi^{\prime}(t) d t$ as the total change of angle along c which X makes against a constant vector field $E \in \mathcal{V}\left(\mathbb{R}^{n}\right)$.
a) Prove that $i(X, c)$ does not depend on E. (Do you get the same number for an arbitrary choice of $E \in \mathcal{V}(M)$?)
b) Prove that curves c_{1}, c_{2} which are (differentiably) homotopic in $\mathbb{R}^{2} \backslash Z$ have the same index, $i\left(X, c_{1}\right)=i\left(X, c_{2}\right)$.
c) Let $p \in Z$ and c be a curve in $\mathbb{R}^{2} \backslash Z$ which is null homotopic in $\{p\} \cup\left\{\mathbb{R}^{2} \backslash Z\right\}$ and has winding number +1 about p. Then the index $j(X, p)$ of X at p is defined by $j(X, p):=i(X, c)$. (Compare with pictures on p.2.)
d) If you attend Riemannian geometry: Note that the angle is only defined in terms of the standard Riemannian metric $\langle\cdot, \cdot\rangle$ on \mathbb{R}^{2}. Prove that if g is any other Riemannian metric on \mathbb{R}^{2}, the similarly defined number $i(X, c):=i(g, X, c)$ agrees.
e) Extensions: Reason that $i(X, c)$ is defined on differentiable manifolds M. Do you have any idea for a similar number in higher dimensions?

