3. Problems for Manifolds

Problem 8 - Continuous image of a set of measure 0 with positive measure:

Let $Q:=[0,1] \times[0,1]$ be the square in the plane \mathbb{R}^{2}. A space-filling curve is a curve $c:[0,1] \rightarrow Q$ which is continuous and surjective. Use this example to construct a continous mapping $f: Q \rightarrow Q$ which maps a set of measure 0 to a set of positive measure.

Problem 9 - Matrices of fixed rank:

a) Check that the space of $m \times n$-matrices with rank 1 has the dimension stated in class. Is there any other rank, besides 0 and $\min (m, n)$, with an obvious dimension?
b) How many charts for M_{r} have we used in class to describe this submanifold of M ?
c) Let $K \subset \mathbb{R}^{n}$ be compact, and $f: K \rightarrow \mathbb{R}^{n+k}$ with $k \geq 0$ be any differentiable map, i.e., f extends as a differentiable map to some open neighbourhood U of K. Find a matrix A, such that $x \mapsto A x+f(x)$ has a Jacobian of rank n for all $x \in K$.

Problem 10 - Helicoids in \mathbb{S}^{3} :

Let $a \in \mathbb{R}$ be a parameter and consider the mapping

$$
h=h_{a}: \mathbb{R}^{2} \rightarrow \mathbb{S}^{3} \subset \mathbb{R}^{4}, \quad(u, v) \mapsto\left(\begin{array}{c}
\cos u \cos v \\
\cos u \sin v \\
\sin u \cos (a v) \\
\sin u \sin (a v)
\end{array}\right)
$$

a) h_{a} is an immersion of \mathbb{R}^{2} for $a \neq 0$.

Hint: Calculate the determinant of a 2×2 minor of the Jacobian $J h=\left(\frac{\partial}{\partial u} h, \frac{\partial}{\partial v} h\right)$.
b) Show the two axes $v \mapsto a_{1}(v)=h(0, v)$ and $v \mapsto a_{2}(v)=h\left(\frac{\pi}{2}, v\right)$ are great circles whose points are pairwise perpendicular. Identifying \mathbb{R}^{4} with $\mathbb{C} \times \mathbb{C}$, how would you write a_{1} and a_{2} ?
c) The maps $u \mapsto h(u, v)=(\cos u) a_{1}(v)+(\sin u) a_{2}(v)$ parameterize great circles with unit speed, and these circles meet the two axes at right angles. (What does it mean for two curves to meet at a right angle?) In this sense, h represents a helicoid in \mathbb{S}^{3}.
d) Try to identify the image surface for $a=0$. What is the set where h_{0} fails to be an immersion and what is its image?
e) Consider $a=1$. What is the speed $\left\|\frac{\partial}{\partial v} h\right\|$? Find periods for h, that is, $(c, d) \neq$ $(0,0)$ with minimal length such that $h(u+c, v+d)=h(u, v)$. Use a (non-rigorous) orientability argument to determine the topological type of the image surface.

Problem 11 - Klein bottle:

We use the following which has not been defined formally in class: The Klein bottle is a non-orientable manifold, obtained by identifying opposite edges of a square: One pair of opposite edges in the same direction, the other in opposite directions.
a) Reason geometrically why the Klein bottle cannot be embedded into \mathbb{R}^{3}.

Hint: An embedding defines a continous normal.
b) Prove that the helicoid h_{2} (or $h_{1 / 2}$) represents a Klein bottle immersed in \mathbb{R}^{4}. To do so, determine again minimal periods for h as in the previous problem.
c) Does h_{2} represent an embedding of the Klein bottle into \mathbb{S}^{3} ?

