Fachbereich Mathematik Prof. K. Große-Brauckmann 3.11.2009

2. Problems for Manifolds

Problem 4 – Tangent vectors to \mathbb{S}^2 :

The following curves in \mathbb{S}^2 are defined in a neighbourhood of t = 0. Which curves are equivalent in \mathbb{S}^2 and define the same tangent vector?

$$c_{1}(t) = (\cos t, 0, \sin t) \qquad c_{2}(t) = (\sin t, 0, \cos t), c_{3}(t) = (\cos(2t), 0, \sin(2t)), \qquad c_{4}(t) = (\sqrt{1 - t^{2}}, 0, t)$$

Check first that $c_i(0)$ agrees, and then for a chart x that $(x \circ c)'(0)$ agrees. A good choice of x is projection to a coordinate plane (verify that x a chart!).

Problem 5 – Tangent vectors to $\mathbb{R}P^2$:

Consider the point $p = [1, 1, 0] \in \mathbb{R}P^2$ and the charts x_1 and x_2 given in the lecture.

- a) Find curves $c_1(t)$, $c_2(t)$ in \mathbb{R}^2 which represent the standard basis at p w.r.t. x_1 .
- b) Decide if c_1 , c_2 also represent the standard basis w.r.t. x_2 . To do so, consider the representing curves $d_i(t) := (x_2 \circ x_1^{-1})(c_i(t))$ in the image of x_2 .
- c) Which linear mapping maps $c'_i(0)$ to $d'_i(0)$?

Problem 6 – Minimal atlas:

Let M be a compact manifold, containing at least two points. Show that each atlas of M contains at least two charts. In particular the stereographic atlas of \mathbb{S}^n is minimal.

Problem 7 – Vector fields and division algebras:

Assume that on some \mathbb{R}^n there is the structure of a *division algebra*, that is, a bilinear map $\beta \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$, written as $(x, y) \mapsto xy$, such that all maps

 $\lambda_x \colon \mathbb{R}^n \to \mathbb{R}^n, \quad y \mapsto xy \quad \text{and} \quad \rho_y \colon \mathbb{R}^n \to \mathbb{R}^n, \quad x \mapsto xy$

are bijective. We do not assume that the multiplication β is associative, but we assume there is a unit element $e \in \mathbb{R}^n$ with ex = xe = x for all $x \in \mathbb{R}^n$. Prove the following:

- a) If n > 1 and $x \notin \mathbb{R}e$ then λ_x has no real eigenvalues. Hint: If $xy = \mu y$ then $(x - \mu e)y = 0$.
- b) n is even. *Hint:* Recall a linear algebra result on eigenvalues.
- c) We extend $b_n = e$ to a basis (b_1, \ldots, b_n) of \mathbb{R}^n and consider the corresponding vector fields $X_j := X_{\lambda_{b_j}}$ for $j = 1, \ldots, n$ on \mathbb{S}^{n-1} . Show that for each $x \in \mathbb{S}^{n-1}$, the vectors $X_1(x), \ldots, X_{n-1}(x)$ are linearly independent. *Hint:* span $\{x, b_1 x, \ldots, b_{n-1} x\} = \rho_x(\mathbb{R}^n) = \mathbb{R}^n$.
- d) An *n* manifold is *parallelizable* if there are *n* vector fields which give a basis of each tangent space. Show that \mathbb{S}^{n-1} is parallelizable, if \mathbb{R}^n carries the structure of a division algebra.
- e) Show that the matrix group

$$\mathbb{H} := \left\{ \begin{pmatrix} a & -\overline{b} \\ b & \overline{a} \end{pmatrix} : a, b \in \mathbb{C} \right\}$$

gives $\mathbb{P}^4 - \mathbb{C}^2$ the structure of a four dimensional associative division algebra, called