2. Problems for Manifolds

Problem 4 - Tangent vectors to \mathbb{S}^{2} :
The following curves in \mathbb{S}^{2} are defined in a neighbourhood of $t=0$. Which curves are equivalent in \mathbb{S}^{2} and define the same tangent vector?

$$
\begin{array}{lr}
c_{1}(t)=(\cos t, 0, \sin t) & c_{2}(t)=(\sin t, 0, \cos t) \\
c_{3}(t)=(\cos (2 t), 0, \sin (2 t)), & c_{4}(t)=\left(\sqrt{1-t^{2}}, 0, t\right)
\end{array}
$$

Check first that $c_{i}(0)$ agrees, and then for a chart x that $(x \circ c)^{\prime}(0)$ agrees. A good choice of x is projection to a coordinate plane (verify that x a chart!).

Problem 5 - Tangent vectors to $\mathbb{R} P^{2}$:
Consider the point $p=[1,1,0] \in \mathbb{R} P^{2}$ and the charts x_{1} and x_{2} given in the lecture.
a) Find curves $c_{1}(t), c_{2}(t)$ in \mathbb{R}^{2} which represent the standard basis at p w.r.t. x_{1}.
b) Decide if c_{1}, c_{2} also represent the standard basis w.r.t. x_{2}. To do so, consider the representing curves $d_{i}(t):=\left(x_{2} \circ x_{1}^{-1}\right)\left(c_{i}(t)\right)$ in the image of x_{2}.
c) Which linear mapping maps $c_{i}^{\prime}(0)$ to $d_{i}^{\prime}(0)$?

Problem 6 - Minimal atlas:

Let M be a compact manifold, containing at least two points. Show that each atlas of M contains at least two charts. In particular the stereographic atlas of \mathbb{S}^{n} is minimal.

Problem 7 - Vector fields and division algebras:

Assume that on some \mathbb{R}^{n} there is the structure of a division algebra, that is, a bilinear $\operatorname{map} \beta: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, written as $(x, y) \mapsto x y$, such that all maps

$$
\lambda_{x}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \quad y \mapsto x y \quad \text { and } \quad \rho_{y}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \quad x \mapsto x y
$$

are bijective. We do not assume that the multiplication β is associative, but we assume there is a unit element $e \in \mathbb{R}^{n}$ with $e x=x e=x$ for all $x \in \mathbb{R}^{n}$. Prove the following:
a) If $n>1$ and $x \notin \mathbb{R} e$ then λ_{x} has no real eigenvalues.

Hint: If $x y=\mu y$ then $(x-\mu e) y=0$.
b) n is even. Hint: Recall a linear algebra result on eigenvalues.
c) We extend $b_{n}=e$ to a basis $\left(b_{1}, \ldots, b_{n}\right)$ of \mathbb{R}^{n} and consider the corresponding vector fields $X_{j}:=X_{\lambda_{b_{j}}}$ for $j=1, \ldots, n$ on \mathbb{S}^{n-1}. Show that for each $x \in \mathbb{S}^{n-1}$, the vectors $X_{1}(x), \ldots, X_{n-1}(x)$ are linearly independent.
Hint: $\operatorname{span}\left\{x, b_{1} x, \ldots, b_{n-1} x\right\}=\rho_{x}\left(\mathbb{R}^{n}\right)=\mathbb{R}^{n}$.
d) An n manifold is parallelizable if there are n vector fields which give a basis of each tangent space. Show that \mathbb{S}^{n-1} is parallelizable, if \mathbb{R}^{n} carries the structure of a division algebra.
e) Show that the matrix group

$$
\mathbb{H}:=\left\{\left(\begin{array}{cc}
a & -\bar{b} \\
b & \bar{a}
\end{array}\right): a, b \in \mathbb{C}\right\}
$$

