Fachbereich Mathematik Prof. Dr. Steffen Roch Nada Sissouno

WS 2009/2010 03.02.2010

12. Tutorium zur "Analysis II"

Wegintegrale

Aufgabe T1

Sei $\gamma=(\gamma_1,\ldots,\gamma_n)^T:[a,b]\to\mathbb{R}^n$ ein Weg. Zeigen Sie: γ ist genau dann rektifizierbar, wenn jede Komponente $\gamma_k:[a,b]\to\mathbb{R}$ eine Funktion von beschränkter Variation ist.

Aufgabe T2

Beweisen Sie Satz 1 aus Abschnitt 11.4 der Vorlesung: Ist $\gamma:[a,b]\to\mathbb{R}^n$ ein rektifizierbarer Weg mit zugehöriger Kurve $\Gamma=\gamma[a,b]$, und ist $f:\Gamma\to\mathbb{R}^n$ stetig, so existiert das Wegintegral $\int_{\gamma}f\mathrm{d}x$.

Aufgabe T3

Sei $f \in BV[a, b]$ im Punkt $x_0 \in (a, b)$ stetig. Dann ist auch die Funktion

$$F(x) = \begin{cases} 0 & \text{für } x = a \\ V_a^x(f) & \text{für } x \in (a, b] \end{cases}$$

in x_0 stetig. Beweisen Sie diese Aussage, und schließen Sie mit ihrer Hilfe, dass die Weglängenfunktion s eines rektifizierbaren Weges $\gamma:[a,b]\to\mathbb{R}^n$ stetig ist.

Anmerkung: Aus der ersten Aussage folgt nachstehende Präzisierung von Aufgabe 4 aus Tutorium 10:

Jede stetige Funktion beschränkter Variation lässt sich als Differenz zweier wachsender stetiger Funktionen schreiben.