Mathematik I f. MB/MPE, WIMB, Mech und CE

7. Übung

Gruppenübungen

Aufgabe 24 (Spiegelung in \mathbb{R}^2) Der Punkt $\vec{x} = (1,2)^T$ werde an der y-Achse gespiegelt. Als Bild erhalte man \vec{y} .

- (i) Bestimmen Sie \vec{y} anhand einer Skizze.
- (ii) Bestimmen Sie die Abbildungsmatrix A aus den Bildern der Basisvektoren \vec{e}_1 und \vec{e}_2 .
- (iii) Überprüfen Sie, ob es sich um eine Spiegelung handelt, d.h. ob gilt $A^2 = E$.

Aufgabe 25 (Eigenwerte und Eigenvektoren) Gegeben sei die Matrix

$$A = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}.$$

- (i) Bestimmen Sie Spur und Determinante dieser Matrix.
- (ii) Stellen Sie das charakteristische Polynom $p(\lambda)$ auf, und bestimmen Sie die Eigenwerte λ_1, λ_2 . Wo finden Sie im Polynom $p(\lambda)$ die Spur und die Determinante der Matrix wieder?
- (iii) Bestimmen Sie zu den Eigenwerten jeweils die Eigenvektoren und die zugehörigen Eigenräume $\{\vec{x}: A\vec{x} = \lambda \vec{x}\}.$

Aufgabe 26 (Basisdarstellung von Vektoren und linearen Abbildungen) Im \mathbb{R}^3 seien die Basis gegeben

$$\mathcal{B} = \left\{ \vec{b}_1 = (1, 0, 1)^T, \ \vec{b}_2 = (-1, 2, 1)^T, \ \vec{b}_3 = (-2, -2, 2)^T \right\}$$

sowie ein Vektor

$$\vec{x}_1 = (1, 0, -3)^T$$

- (i) Begründen Sie zunächst, dass \mathcal{B} tatsächlich eine Basis darstellt.
- (ii) Bestimmen Sie die Darstellung \vec{y}_1 des gegebenen Vektors \vec{x}_1 bez. der Basis \mathcal{B} .

Ferner sei der Vektor \vec{y}_2 gegeben durch

$$\vec{y}_2 = (1, 0, 1)^T$$
 bez. der Basis \mathcal{B} .

(iii) Bestimmen Sie die Darstellung \vec{x}_2 dieses Vektors \vec{y}_2 bez. der Standardbasis.

Betrachten Sie nun die lineare Abbildung

$$f(\vec{x}) = A \cdot \vec{x}$$
 gegeben durch $\vec{x} \mapsto \vec{b}_1 \times \vec{x}$

mit obigem Basisvektor \vec{b}_1 .

- (iv) Begründen Sie, dass diese Abbildung tatsächlich linear ist.
- (\mathbf{v}) Bestimmen Sie die Abbildungsmatrix A dieser Abbildung.
- (vi) Stellen Sie schließlich A in der Basis $\mathcal B$ dar, d.h. bestimmen Sie $\widetilde A=B^{-1}\cdot A\cdot B$ für die Basistransformationsmatrix B.

Hausübungen

Abgabe am 18. Dezember 2009, bzw. am 11. Januar 2010 in den Übungen.

Aufgabe H19 (4 Punkte) Eigenwerte und Eigenvektoren Gegeben sei die Matrix

$$A = \begin{pmatrix} 0 & 2 & -1 \\ 2 & -1 & 1 \\ 2 & -1 & 3 \end{pmatrix}.$$

- (i) Stellen Sie das charakteristische Polynom $p_A(\lambda)$ auf, und bestimmen Sie alle Eigenwerte von A.
- (ii) Bestimmen Sie zu den Eigenwerten jeweils die zugehörigen Eigenräume.

Aufgabe H20 (4 Punkte) Spiegelung in \mathbb{R}^2

- (i) Bestimmen Sie die Abbildungsmatrix A zur Spiegelung des \mathbb{R}^2 an der Geraden g: 2x + y = 0. Fertigen Sie dazu eine Skizze an. Ist A orthogonal? Ermitteln sie det(A).
- (ii) Bestimmen Sie das Spiegelbild $\widetilde{\triangle}$ des Dreiecks \triangle mit den Eckpunkten $P=(1,0)^T$, $Q=(0,1)^T$ und $R=(1,1)^T$. Wie lauten die Bilder dieser Eckpunkte? Fertigen Sie auch hier eine Skizze an.

Aufgabe H21 (4 Punkte) Drehungen in \mathbb{R}^3 und Basiswechsel Bestimmen Sie die Abbildungsmatrix $A \in \mathbb{R}^{3\times 3}$ (bez. der Standardbasis) der Drehung des \mathbb{R}^3 um den Winkel

$$\varphi = -\frac{\pi}{6}$$
 um die Drehachse $\vec{v}_1 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\1 \end{pmatrix}$.

Gehen Sie wie folgt vor:

- (i) Ergänzen Sie \vec{v}_1 zu einer Basis $\mathcal{B} := \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ aus orthogonalen Einheitsvektoren.
- (ii) Wie lautet die Abbildungsmatrix \widetilde{A} der Drehung bez. dieser Basis \mathcal{B} ?
- (iii) Zeigen Sie, dass \tilde{A} eine orthogonale Matrix ist.
- (iv) Wie berechnet sich nun A aus \widetilde{A} und der Basistransformationsmatrix B, welche \mathcal{B} in die Standardbasis übersetzt? Berechnen Sie A exakt oder näherungsweise.

Aufgabe H22 (4 Zusatzpunkte) Lineare Abbildungen und Basiswechsel Betrachten Sie die lineare Abbildung $\varphi \colon \mathbb{R}^2 \to \mathbb{R}^2$, gegeben durch

$$\varphi((1,3)^T) = 4 \cdot (1,3)^T, \quad \varphi((1,1)^T) = -(1,1)^T.$$
 (*)

- (i) Bestimmen Sie (*ohne* explizite Rechnung!) eine Basis $\mathcal{B} = \{\vec{b}_1, \vec{b}_2\}$ des \mathbb{R}^2 , bez. welcher sich die Abbildungsmatrix C dieser Abbildung in Diagonalgestalt schreiben lässt.
- (ii) Bestimmen Sie nun die Abbildungsmatrix A der linearen Abbildung bez. der Standardbasis.
- (iii) Berechnen Sie nun $\varphi(2,0)$, und zwar
 - (a) indem Sie zunächst $(2,0)^T = 3(1,1)^T (1,3)^T$ benutzen und anschließend $\varphi(2,0)$ aus (*) sowie der Linearität von φ ermitteln;
 - (b) indem Sie zweitens Ihr Resultat aus Aufgabenteil (ii) verwenden und $\varphi(2,0)$ direkt aus einer Matrizenmultiplikation gewinnen.