WS 09/10

2.-4.12.2009

Einführung in die Funktionalanalysis

8. Übung

Aufgabe 1 (K)

- (a) Geben Sie Beispiele für Unterräume U von Hilberträumen H, sodass $U \subsetneq (U^{\perp})^{\perp}$.
- (b) Beweisen Sie Lemma 6.2, die Parallelogrammgleichung.

Aufgabe 2 (K) (Dirichlet'sches Prinzip)

Es sei H ein Hilbertraum, $a: H \times H \to \mathbb{K}$ eine stetige, koerzive Sesquilinearform und $\varphi \in H'$. Beweisen Sie die folgenden Aussagen:

- (a) Es gibt genau ein $u \in H$ mit $a(v, u) = \varphi(v)$ für alle $v \in H$.
- (b) Das Funktional

$$F(v) := \frac{1}{2}a(v,v) - \operatorname{Re}\varphi(v), \quad v \in H,$$

besitzt ein absolutes Minimum, das nur in u angenommen wird.

Hinweis: Zeigen Sie, dass es ein $\alpha > 0$ gibt, sodass für alle $v \in H$ gilt:

$$F(v) - F(u) = \frac{1}{2}a(v - u, v - u) \ge \frac{\alpha}{2}||v - u||^2.$$

Aufgabe 3 (Hardyraum)

Es sei $D:=\{z\in\mathbb{C}:|z|<1\}$. Dann heißt

$$H^2(D) := \left\{ f: D \to \mathbb{C} \text{ holomorph mit } \sup_{0 \le r < 1} \frac{1}{2\pi} \int_0^{2\pi} |f(re^{it})|^2 \, \mathrm{d}t < \infty \right\}$$

Hardyraum. Zeigen Sie die folgenden Aussagen:

(a) Ist $f: D \to \mathbb{C}$ holomorph mit Potenzreihendarstellung $f(z) = \sum_{n=0}^{\infty} a_n(f) z^n$, so gilt

$$f \in H^2(D) \Leftrightarrow (a_n(f))_{n>0} \in l^2.$$

(b) Für $f, g \in H^2(D)$ existiert

$$(f,g) := \lim_{r \to 1_{-}} \frac{1}{2\pi} \int_{0}^{2\pi} f(re^{it}) \overline{g(re^{it})} \, \mathrm{d}t$$

und es gilt $(f,g) = \langle (a_n(f)), (a_n(g)) \rangle$, wobei $\langle \cdot, \cdot \rangle$ das Skalarprodukt in l^2 ist.

(c) $(H^2(D), (\cdot, \cdot))$ ist ein Hilbertraum.

Aufgabe 4 (Rademacher-Funktionen in L^2)

Zeigen Sie, dass die Rademacher-Funktionen

$$r_n(t) := \operatorname{sgn}(\sin(2^n \pi t)), \quad n \in \mathbb{N}_0,$$

ein Orthonormalsystem, aber keine Orthonormalbasis von $L^2([0,1])$ bilden. Skizzieren Sie außerdem r_0, r_1 und r_2 .

Die mit (K) gekennzeichneten Übungen können in der nächsten Übungsstunde schriftlich zur Korrektur abgegeben werden.