Einführung in die Funktionalanalysis

1. Übung

Aufgabe 1 (K)

Für $x = (x_1, \dots, x_d) \in \mathbb{R}^d$ sei

$$||x||_1 := \sum_{i=1}^d |x_i|, \quad ||x||_2 := \left(\sum_{i=1}^d |x_i|^2\right)^{1/2}, \quad ||x||_{\infty} := \max_{1 \le i \le d} |x_i|.$$

- (a) Zeigen Sie, dass $(\mathbb{R}^d, \|\cdot\|_p)$, $p=1,2,\infty$, Banachräume sind.
- (b) Skizzieren Sie für d=2 die "Einheitskugeln" $B_p:=\{x\in\mathbb{R}^d:\,\|x\|_p\leq 1\}.$

Aufgabe 2

Es sei X:=C([a,b]) für a< b und $\omega:[a,b]\to\mathbb{R}$ eine beschränkte, nichtnegative Funktion. Wir setzen

$$p_{\omega}(f) := \sup \{ \omega(s) | f(s) | : s \in [a, b] \}.$$

- (a) Welche Bedingungen muss man an ω (genauer an $\omega^{-1}(0)$) stellen, damit p_{ω} eine Norm ist?
- (b) Es existiere $\varepsilon > 0$ so, dass $\omega(s) \geq \varepsilon$ für alle $s \in [a, b]$. Zeigen Sie, dass (X, p_{ω}) ein Banachraum ist.

Aufgabe 3 (K)

Für a < b sei $X := C^1([a,b]) := \{ f \in C([a,b]) : f \text{ stetig differenzierbar in } [a,b] \}$. Für $f \in X$ sei

$$p_1(f) := \sup\{|f(s)| : s \in [a, b]\},$$

$$p_2(f) := \sup\{|f'(s)| : s \in [a, b]\},$$

$$p_3(f) := |f(a)| + \sup\{|f'(s)| : s \in [a, b]\}.$$

Zeigen Sie:

- (a) p_1 ist eine Norm auf X; p_2 ist keine Norm auf X.
- (b) (X, p_1) ist kein Banachraum.
- (c) (X, p_3) ist ein Banachraum.

Aufgabe 4

Sei E eine nichtleere Menge. Eine Funktion $d: E \times E \to \mathbb{R}$ heißt Metrik, falls

- (i) $d(x,y) \ge 0$ und $d(x,y) = 0 \Leftrightarrow x = y$,
- (ii) d(x, y) = d(y, x),
- (iii) $d(x, y) \le d(x, z) + d(z, y)$,

wobei $x, y, z \in E$.

Sei $I:=[0,\infty)$ und $F:=I\times E.$ Zeigen Sie, dass die Funktion $d^2:F\times F\to\mathbb{R},$ definiert durch

$$d^{2}((t,x),(s,y)) := (d(x,y)^{2} + |t-s|)^{1/2} \qquad (x,y \in E, s,t \in I),$$

eine Metrik auf F definiert, falls d eine Metrik auf E ist. In diesem Fall wird d^2 auch parabolische Metrik genannt.

Die mit (K) gekennzeichneten Übungen können in der nächsten Übungsstunde schriftlich zur Korrektur abgegeben werden.