Introduction

to Mathematical Software $7^{\text {th }}$ Exercise Sheet

Exercise 7.1 Maple Worksheet

Obtain the Maple worksheet IMS_2009_2010_5.mw from the course webpage (it is located under the Lecture Slides tab. Open the worksheet in Maple and work through it line by line to understand what it does. Consider the Maple help if you are unsure what a particular command is good for or how it works.

Exercise 6.2 The O-Notation and Complexity of Algorithms

In the analysis of algorithms, one very important issue is their efficiency for arbitrarily large inputs, i.e. we are interested in their order of growth and hence their complexity. One might argue that with the speed-up of modern computers the complexity of algorithms becomes less important. However, experience shows that the problems people try to solve grow much faster than the available computing power.

O-Notation

In this exercise we introduce the so called O-notation that is used to compare the efficiency of algorithms, in particular for arbitrarily large inputs.

Definition 1 Let $g: \mathbb{N} \rightarrow \mathbb{N}$ be a function. The set $O(g)$ is defined as

$$
O(g)=\left\{f: \mathbb{N} \rightarrow \mathbb{N} \mid \exists c>0, \exists n_{0} \in \mathbb{N}, \forall n \geq n_{0}: 0 \leq f(n) \leq c g(n)\right\}
$$

If $f \in O(g)$ (alternatively, we write $f=O(g)$), we say that " f is Big O of g ", or that g is an asymptotic upper bound for f.
This means that f does not grow faster than g for $n \rightarrow \infty$. Note in particular that f is asymptotically positive, i.e. $f(n)>0$ for $n \geq n_{0}$.

Definition 2 Let $g: \mathbb{N} \rightarrow \mathbb{N}$ be a function. The set $\Omega(g)$ is defined as

$$
\Omega(g)=\left\{f: \mathbb{N} \rightarrow \mathbb{N} \mid \exists c>0, \exists n_{0} \in \mathbb{N}, \forall n \geq n_{0}: 0 \leq c g(n) \leq f(n)\right\}
$$

For $f \in \Omega(g), g$ is called an asymptotic lower bound.
This means that f grows at least as fast as g for $n \rightarrow \infty$.
a) Show that $f=O(g)$ if and only if $g=\Omega(f)$.

Definition 3 Let $g: \mathbb{N} \rightarrow \mathbb{N}$ be a function. The set $\Theta(g)$ is defined as

$$
\Theta(g)=\left\{f: \mathbb{N} \rightarrow \mathbb{N} \mid \exists c_{1}, c_{2}>0, \exists n_{0} \in \mathbb{N}, \forall n \geq n_{0}: 0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)\right\}
$$

For $f \in \Theta(g), f$ and g are called asymptotically equivalent.
Prove the following propositions:
b) If $c>0$ is constant, then $c f=\Theta(f)$.
c) $f=\Theta(g)$ if and only if $g=\Theta(f)$.
d) If $h(n)=O(g)$ and $f(n) \leq h(n)$ for n large enough, then $f=O(g)$.
e) Let $h_{1}=\Omega(g)$ and $h_{2}=O(g)$. If $h_{1}(n) \leq f(n) \leq h_{2}(n)$ for n large enough, then $f=\Theta(g)$.

The way in which a function $f: \mathbb{N} \rightarrow \mathbb{N}$ behaves asymptotically w.r.t a function $g: \mathbb{N} \rightarrow \mathbb{N}$ can often be found by considering the limit of $n \rightarrow \infty$:
f) If $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=L, 0 \leq L<\infty$, then $f=O(g)$.
g) If $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=L, 0<L \leq \infty$, then $f=\Omega(g)$.
h) If $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=L, 0<L<\infty$, then $f=\Theta(g)$.

Complexity of Algorithms

To characterize the complexity of an algorithm, some generic complexity classes as functions of n are used. These include powers of n (including n^{0}), square roots, exponentials, logarithms and factorials and multiplicative combinations of these.
a) Sort the following orders of complexity from lowest to highest:

$$
O\left(n^{2}\right), O\left(3^{n}\right), O\left(2^{n}\right), O\left(n^{2} \lg n\right), O(1), O(n \lg n), O\left(n^{3}\right), O(n!), O(\lg n), O(n)
$$

The complexities of some common situations are given in the following table:

Complexity	Example
$O(1)$	Fetching the first element from a set of data; fetching a given element from an array
$O(\lg n)$	Splitting a set of data in half recursively
$O(n)$	Traversing a set of data
$O(n \lg n)$	Splitting a set of data in half recursively and traversing each half
$O\left(n^{2}\right)$	Matrix-vector multiplication
$O\left(n^{3}\right)$	Matrix inversion
$O(n!)$	Creating all possible permutations of a set of data

b) What is the time complexity of the following code fragments?

```
- int p = 1;
    int s = 0;
    for (int i = 0; i < n; i++)
        p = p * a[i];
    for( int i = 0; i < n; i++)
        s = s + a[i];
- for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++)
            printf("%d * %d = %d\n",i, j, i*j);
- for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++)
        {
            c[i][j] = 0;
            for (int k = 0; k < n; k++)
                c[i][j] = c[i][j] + a[i][k] * b[k][j];
        }
```

c) Suppose you have two algorithms to solve the same problem. The first runs in time $T_{1}(n)=400 n$, the second runs in time $T_{2}(n)=n^{2}$. What are the complexities of these algorithms? For which values of n might we consider to use the algorithm with the higher complexity?

