
Introduction
to Mathematical Software
2nd Exercise Sheet

Department of Mathematics winter term 2009/2010
PD Dr. Ulf Lorenz 02/11/2009
Christian Brandenburg

Exercise 2.1 Greatest Common Divisor

In this exercise, we implement Euclid’s algorithm for finding the greatest common divisor of two natural numbers that
you have come across in your linear algebra class. This will be done in a series of small steps so that you will get familiar
with various aspects of the C-programming language.

a) Reading data from the command line.
First of all, we want to read two natural numbers from the command line. Reading data from the command line is
done with the scanf command. In order to read integers, we use the following form of the scanf command:

int i;

scanf("%d", &i);

The first argument tells scanf which format of characters to expect, in this case %d denotes integers. The second
argument is the address of the variable which we assign the value to. Therefore, we have to place the referencing
operator & in front of the variable name. You will learn more on addresses and references in Exercise 2.2.

Now, write a program that asks the user for two integers, assigns them to variables of type int and prints a
statement of the following form:

printf("Computing the greatest common divisor of %d and %d.\n", a, b);

where a and b are the names of the variables of type int.

Compile and run your program. What happens if you input characters that are not decimal numbers?

b) Conditional program flow control and logical statements.
As you may have noticed, it is possible for the user to input negative integers. However, Euclid’s algorithm is only
defined for positive integers. Therefore, we have to check whether the numbers provided by the user are less than
or equal to zero and in that case finish the program with a warning message.

To do this, we need two ingredients: (conditional) control structures(if-else) and relational and logical operators

if-else

In many situations, we might want to execute a part of the program code only if a certain condition is satisfied. If
it is not satisfied, we might want to execute some alternative code or just continue with the rest of the program.
In these situations, we use the if-else-statment, which looks like

if (expression)

{

statement1;

}

else

{

statement2;

}

1

http://www.cplusplus.com/reference/clibrary/cstdio/scanf/

If expression is true, statement1 is executed, otherwise statement2 is executed. An expression is defined to
be true if its value is not equal to zero and false if it equals zero. Note that the else part is optional and can be
omitted.

Relational and Logical Operators:

In the if-else-statment introduced above we often don’t want to use any type of expressions, but so called
logical expressions. These are expressions that evaluate to either 0 or 1, denoting false or true.

Simple logical expressions consist of a relational operator comparing two operands. Relational operators in C are

> greater than
>= greater than or equal to
< less than
<= less than or equal to
== equal to
!= not equal to

Note that the equality operator is given by ==, not just =, which is the assignement operator! For example, to test
two interger variables a and b for equality, we use the logical expression

a == b

Logical expressions can be combined to arbitrarily complex logical expressions with the following logical operators

&& and
|| or
! not

For example, to test whether an integer a is greater than both the integers b and c, we can use the statement

(a > b) && (a > c)

To find out more about flow control and logical expressions, have a look at
http://publications.gbdirect.co.uk/c_book/chapter3/, in particular the sections 3.1, 3.2.1, and 3.3.

Modify your program so that it detects if at least one of the numbers is not greater than zero and in that case
terminates the program with a warning message.

c) Program flow control: iterations.
In mathematical algorithms, very often a certain sequence of arithmetic operations has to be executed iteratively
until a certain condition is satisfied (or no longer satisfied). In C, this is implemented by means of iteration control
structures, called loops.

At the moment, we will restrict ourselves to so called while-loops. Other types of loops in C are for- and do-while-
loops.

The syntax of the while-loop is as follows:

while (expression)

{

statements;

}

What it does is the following: The loop is only entered if expression evaluates to true, otherwise the code block
is skipped. If the loop is entered, statements is executed. Afterwards, expression is evaluated again, and if it
still evaluates to true, statements is executed again and so on until expression evaluates to false.

More about while-loops can again be found at the link above, section 3.2.2.

d) Euclid’s algorithm.
Now, it is time to implement Euclid’s algorithm. There are several versions of it, either interative or recursive,
which all yield the same result.

We want to implement the following iterative version, given in pseudocode:

2

http://publications.gbdirect.co.uk/c_book/chapter3/

if a < b then
swap a and b

end if
while b > 0 do
r = a % b;

a = b;

b = r;

end while
a contains the gcd

Here, r is a temporary variable of type int containing the remainder of the division.

Add this algorithm to your program and test it with a few examples.

Exercise 2.2 Pointers and Arrays

a) Obtain the file pointer.c from the Course Webpage.

b) Open the file in your text editor and try to understand what happens.

c) Compile and run the program. Is the result what you expected?

d) To learn more about pointers, see
http://www.cplusplus.com/doc/tutorial/pointers.html.

Homework 2.3 Binary Representation of Integers

Preliminary Remark: In this exercise, you are supposed to develop an understanding of how integers are represented in
computers and how computations with them are performed. Most of this exercise is a tutorial, but there are also some
small exercises within each section for you to check if you are familiar with the material.
You should not spend much more than half of the lab session on this exercise. If you don’t get through with this exercise
and still have questions, come and see us in our office hours.

Binary Representation

For computers the least logical entity is a bit, which can have two states – typically written as 0 and 1. Thus, in most
programming languages the natural numbers are represented binary, i.e. they are written in base 2.
For example, the pattern 1101(2) means

1101(2) = 1 · 23
(10) + 1 · 22

(10) + 0 · 21
(10) + 1 · 20

(10)

= 8(10) + 4(10) + 1(10)

= 13(10)

In fact, this representation works in exactly the same way as we are used to write numbers in the decimal system,
where we have base 10:

423(10) = 4 · 102
(10) + 2 · 101

(10) + 3 · 100
(10)

= 400(10) + 20(10) + 3(10)

Here, we have the letters 0,1, 2, . . . , 9 = 10− 1 and each position has 10 times the value of the position one further to
the right.

In the same manner, in base 2 we have the letters 0 and 1 and each position is 2 times the value of the position one
further to the right.

Conversion

As you have seen, conversion from base 2 to base 10 is straightforward; we just add the values of the positions with
non-zero digits. Unfortunately, the other way round is more involved.

For converting from base 10 to base 2 there are two approaches, the naïve and the systematic one. In the naïve
approach we iteratively find the largest power of 2 which is less than or equal to the number we want to convert, place a
1 at the corresponding position of the binary representation and substract this power of two from our decimal number.

3

http://www.cplusplus.com/doc/tutorial/pointers.html

For example, if we want to convert 817(10) to the binary representation, we find that 29 = 512 is the largest power of 2
less than or equal to 817(10). Thus, we place a 1 at the 9th position from the right (note that we start counting positions
with 0!) After substracting, we have 817− 512 = 305, we find that 28 = 256, place a 1 at the 8th position and substract
305− 256= 49. Continuing, we place ones at positions 5,4 and 0. Thus, the binary representation of 817(10) is given by
1100110001(2).

In the systematic approach, we make use of the following properties:

• if we add a zero at the end of a binary number, we multiply it by 2

• if we erase the rightmost digit, we divide by two, neglecting the remainder

• every number can be written in the form 2n or 2n+ 1

• we can read of the last digit of a binary number by checking if it is even or odd

Combining these properties, we arrive at an algorithm for converting numbers from base 10 (and in fact from any base)
to base 2:

• decide whether the number is even or odd; if it is even, we place a 0, otherwise we append a 1 to the left of the
binary representation (in the first iteration, we just place the digit).

• divide by 2 without remainder and iterate until you arrive at 0.

With our example, this algorithm goes as follows:

decimal binary
817
408 1
204 01
102 001
51 0001
25 10001

decimal binary
12 110001

6 0110001
3 00110001
1 100110001
0 1100110001

Exercises:

a) Convert the following decimals to binaries: 4(10), 5(10), 78(10), 127(10)

b) Convert the following binaries to decimals: 111(2), 10101(2), 10111(2), 1110111(2)

Negative Numbers

To also represent negative integers, somehow the “−”-sign has to be represented. In the “sign and magnitude”-approach,
this is achieved by first fixing the number of bits the representation of an integer may use (e.g. 8 bits) and then using
the leftmost bit for the sign. However, this approach has several disadvantages: Firstly, there exist two represenations for
“zero”, i.e. +0 and −0, and secondly, for all arithmatic operations one needs special cases to check for signs.

Two’s Complement

Today, negative integers are typically represented by their “Two’s Complement”. The Two’s Complement of a negative
integer n is built by inverting all bits of the representation of |n| and then adding 1 to it. To represent e.g. −13(10) in an
8 bits wide representation, you first represent 13(10) = 00001101(2), then invert all its bits to 11110010(2) and then add
1 to it, thus −13(10) = 11110010(2) + 1(2) = 11110011(2).
Whether a signed binary number is positive or negative can be determined by looking at the highest bit, which is 0 for
nonnegative and 1 for negative numbers.

Exercises:

a) Find the 8 bits wide representations for −27(10) and −78(10).

b) Which integers may be represented at all with a

1. 8 bits wide representation?

2. 32 bits wide representation?

c) How could you build the Two’s Complement using decimal calculations?

4

Arithmetic

Arithmetic for the binary system works exactly as for the decimal system, which means that you can reuse all the
algorithms you learned in school. In fact, the correctness of these algorithms is independent from the base.

Addition

Computing 15(10) + 5(10) = 20(10) in a binary 8-bit representation:

0 0 0 0 1 1 1 1
0 0 0 01 01 11 01 1
0 0 0 1 0 1 0 0

Note that, in this example, we produce a carry in each bit.

Substraction

For substracting two binary numbers, we can again use the algorithm taught in school, or we can reduce the problem to
addition by negating the second argument (using the two’s complement).

For computing 5(10)−15(10) =−10(10) in a binary 8-bit representation, we first negate the second argument using two’s
complement: 15(10) is in binary representation given by 00001111(2), so its two’s complement is 11110000(2) + 1(2) =
11110001(2). Thus, we can perform an addition:

0 0 0 0 0 1 0 1
1 1 1 1 0 0 01 1
1 1 1 1 0 1 1 0

Multiplication and Division

They also work as taught in school. Check this for some small examples.

Exercises:

Do the following calculations like a computer using 8 bits:

a) 13+ 8

b) 27− 78

c) −27− 78

d) −78− 78

e) 7 · 6

What happens in d)?

5

