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Maple

 Properties
  - Software package
  - implemented in the programing language C
  - available for many Operating Systems, e.g. Windows, Unix, Linux
  - desined for numerical and symbolic expressions 
  
  - includes untilities for algebra, calculus, discrete mathematics, graphics, ...

  History
  - 1980: first development at the University of Waterloo, Canada
  - 1988: Waterloo Maple Software was founded in order to sell and improve the software 
  - currently: version 12

8
 Getting started
  - login to one of the machines in the pool in the Piloty building
  - open a shell / a terminal
  - type: xmaple (or maple, if you would like to work without windows; e.g. remote from home)

    Menu bar at the top:
     - allows you to save or load and edit your maple session
       e.g. clicking on the File menu and selecting Save allows to save the current worksheet
     - below the menu bar, there is a collection of shortcut-buttons

   Maple Help
    - help menu, "Maple Help"
    - ?command;  e.g. ?solve, if you know the keyword in advance
       

plot cos
x
2

C sin 2 x , x = 0 ..4 p ;
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plot3d 1.3x sin y , x =K1 ..2 p, y = 0 ..p, coords = spherical, style = patch ;
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    - the help-window has two panels: the Help Navigator on the left and the help itself on the right
    - each help page contains some examples; copying an example and pasting it into the worksheet is 
possible
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Basic Conventions

 Entering a command, example

restart;

 Arithmetic operators

Addition C 3C 4

Substraction K xK y

Multiplication * 2*x

Division / x / y

Exponentiation ^ 3^4

Factorial ! 3!

  The precedence order follows the mathematical conventions:

56K 4$2;
48

56K 4 $2;
104

  Special commands to access previous results
    %         latest one
    %%      last but second command
    %%%   last but third command

#this is a comment
2$4; # most recent result becomes 8

8

% $ 12.4; # this computes 8$12.4. 99.2 becomes most recent result
99.2

%%K%; # computes 8-99.2
K91.2

  Defining Expressions with ":="
    - expression: combination of numbers, variables and operators
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    - Syntax is name:=expression
    - maybe most used concept in Maple
    - notice the difference between an expression and a function:

    Example
f d x2K 3$xC 13;

f := x2K 3 xC 13

g  d x / 3$xK 3;
g := x/3 xK 3

h x  d 3 $xK 4;
h := x/3 xK 4

plot f, h x , g x , x = 1 ..10 ;
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   If you make a mistake, you can go back with the cursor, change the command-line and re-execute the 
line.
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Basic Data Structures 

  - fundamental data structures: expression sequences, lists, sets. (e.g. used as parameters in maple 
commands)

  Sequences, implicitely or with command seq(f(i),i=m..n)
3, 5, x, 4;

3, 5, x, 4

s d 3, 5, x, 4;
s := 3, 5, x, 4

evalf p ;
3.141592654

t d seq i2, i = 2 ..5 ;
t := 4, 9, 16, 25

t2 d 3, t;
t2 := 3, 4, 9, 16, 25

  A list
    - is an expression sequence enclosed in square brackets
    - preserves order and repetition of elements

  A set
    - is an expression sequence enclosed in curly brackets
    - does not preserve order an does not contain the same element several times

list1 d 5, 4, 3, 5, 4, 3 ;
list1 := 5, 4, 3, 5, 4, 3

list2 d 3, 4, 5 ;
list2 := 3, 4, 5

set1 d 5, 4, 3, 5, 4, 3 ;
set1 := 3, 4, 5

set2 d 4, 5, 3 ;
set2 := 3, 4, 5

s d op list2 , op list2 ;
s := 3, 4, 5, 3, 4, 5

Numerical Computation

  Fraction numbers and floating point numbers

    - fractions are not reduced to floating point approximations
    - exact computations with fractions
    - with evalf, the fraction can be converted to a floatring point number with Digits many digits.
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x d 
9
8
C

6
5

;

x :=
93
40

evalf % ;
2.325000000

evalf x ;
2.325000000

Digits d 20;
Digits := 20

evalf x ;
2.3250000000000000000

9
8.0

C
6
5

;  # a floating number in the expression leads to implicit evalf

2.3250000000000000000

  Integer numbers

    - arbitrary large integers (as far as there is enough memory)

10000!;
28462596809170545189064132121198688901480514017027992307941799942744113400037\

64443772990786757784775[...35460 digits...]
00000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000

Digits d 10; 100.0!;
Digits := 10

9.332621544 10157

  Complex Numbers
    - a complex number z is of the form a + bi, with i2= -1 and a,b ∈ℝ. a = Re(z) is the realpart of z and 
b=Im(z) 
      is the imaginary part of z
    - two complex numbers are equal if and only if their real parts and their imaginary parts are equal 
  
    - Complex numbers are added, subtracted, multiplied, and divided by formally applying the 
associative, 
      commutative and distributive laws of algebra, together with the equation i 2 = -1.
          Addition        : (a+bi) + (c+di) = (a+c) + (b+d)i
          Substraction  : (a+bi) - (c+di) = (a-c) + (b-d)i
          Multiplication: aC bi $ cC di  = acK bd  C bcC ad i



O O 

O O 

(28)(28)

O O 

O O 

(30)(30)

(31)(31)

(29)(29)

O O 

(32)(32)
O O 

O O 

          Division        : 
aC bi
cC di  = 

acC bd
c2C d 2 C

bcK ad
c2C d 2 i, with c or d not equal to 0

    - with the given definitions of addition, substraction, multiplication, division, and
          the additive identity (zero-element) 0 + 0i,
          the multiplicative identity (one-element) 1 + 0i,
          the addidive inverse of a number a + bi: -a - bi, and

          the multiplicative inverse of a + bi: 
a

a2C b 2 C
Kb

a2C b 2 ,

      the complex numbers ℂ are a field  (dt: Körper)

3C 3$I
2C 6$I ;

3
5
K

3
10

 I

3
32C 52 C

K5
32C 52 $I  $ 3C 5$I ;

1

Symbolic Computations

c d 
a

a2C b 2 C
Kb

a2C b 2 $I  $ aC b$I ;

c :=
a

a2C b 2 K
I b

a2C b 2  aC I b

Simplifying an Expression

Maple knows many functions for symbolic expression computations. Here, the most commonly used 
ones.

The simplify command tries to find a simpler equivalent for a given expression. The rules for the 
simplification steps follow some heuristics (but of course, the chosen simplification steps themselves
are correct).

simplify % ;

K
Ka2K b 2

a2C b 2

simplify % ;
1
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  The following expression leads to a surprising answer. Why? Because somewhere above, we already
  defined x. Thus: be careful and alert!

simplify sin x 2$x4C cos x 2$x4 ;  
74805201
2560000

simplify sin y 2$y4C cos y 2$y4 ;
y4

restart;
simplify sin x 2$x4C cos x 2$x4 ;  

x4

Expanding a Polynomial

The expand command produces a sum of products for polynomials.
A polynomial is a mathematical expression consisting of a sum of terms each of which is a product of a 
constant and one or more variables with non-negative integral powers. If there is only a single variable,
x, 
the general form is given by a0xn + a1xn- 1 + a2xn-2 + ... + an-1x + an, where the ai are constants (called 
coefficients). 

Examples:

restart; p d x C 3 $ xK 7 ;
p := xC 3  xK 7

expand p ;
x2K 4 xK 21

q d xC 3 $ xK 7 $ xC 7 ; r d xC 25 $ xK 7 $ xC 9 ;

 expand simplify expand q
r ;

q := xC 3  xK 7  xC 7
r := xC 25  xK 7  xC 9

x2

xC 25  xC 9
C

10 x
xC 25  xC 9

C
21

xC 25  xC 9

Factorize a Polynomial Expression

The command factor is the opposite of the expand command. It factorizes polynomial exprressions.
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factor x2K 1 ;
xK 1  xC 1

factor %% ;
xC 3  xC 7
xC 25  xC 9

Normalize fractions

Restructures rational expressions. If possible, an expression is converted to factored normal form. This 
is the form numerator/denominator, where the numerator and denominator are relatively prime 
polynomials with integer coefficients.
I.e., common factors are canceled.

normal x5

xC 1
C

x4

xC 1
;

x4

normal 1
x C

x
xC 1

;

x2C xC 1
x xC 1

normal 1
x C

x
xC 1

, expanded ;

x2C xC 1
x2C x

simplify x5

xC 1
C

x4

xC 1
;

x4

normal q
r ;  #in the output are nominator and denominator relatively prime.

xC 3  xC 7
xC 25  xC 9

normal q
r , expanded ;

x2C 10 xC 21
x2C 34 xC 225

Programming with Maple

Simple commands
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e.g. all direct commands we saw so far.

Comparison Operators (<, >, >, <=, >=)

a d 0; b d 1;
a := 0
b := 1

evalb a = 0 ; #evalb prints boolean results to screen
true

evalb b O 2 ;
false

evalb bC a % 0 ;
a d 0;

a := 0

Flow Control (if, for, while, ...)

     if <conditional expression> then <statement sequence>
               | elif <conditional expression> then <statement sequence> |
               | else <statement sequence> |
     end if
   (Note: Phrases located between | | are optional.)

if a O 0  then f d x2 fi;
if a = 0  then f d x2 fi;

f := x2

if a ! 9  then 
    f d x2 C 1;  #  ";" is necessary, because: several statements without structure
   g d x2           # ";" not necessary
 else
   g d x2C 1;
   f d x2

 end if;
f := x2C 1

g := x2

      The for ...while ... do loop
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1) Print even numbers from 6 to 10. 
for i from 6 by 2 to 10 do print i end do;

6
8
10

2) Find the sum of all two-digit odd numbers from 11 to 99. 
mysum d 0 :
for i from 11 by 2 while i ! 100 do
    mysum d mysumC i;
    #print mysum ;
 end do: #a ; instead a : leads to different outputs
 mysum;

2475


