Maple

Properties

- Software package
- implemented in the programing language C
- available for many Operating Sy stems, e.g. Windows, Unix, Linux
- desined for numerical and symbolic expressions
- includes untilities for algebra, calculus, discrete mathematics, graphics, ...

History

- 1980: first development at the University of Waterloo, Canada
- 1988: Waterloo Maple Software was founded in order to sell and improve the software - currently: version 12

$$
\begin{equation*}
8 \tag{1}
\end{equation*}
$$

Getting started

- login to one of the machines in the pool in the Piloty building
- open a shell / a terminal
- type: xmaple (or maple, if you would like to work without windows; e.g. remote from home)

Menu bar at the top:

- allows you to save or load and edit your maple session
e.g. clicking on the Filemenu and selecting Save allows to save the current worksheet
- below the menu bar, there is a collection of shortcut-buttons

Maple Help

- help menu, "Maple Help"
- ?command; e.g. ?solve, if you know the keyword in advance

$$
\text { plot }\left(\cos \left(\frac{x}{2}\right)+\sin (2 x), x=0 . .4 \pi\right)
$$

plot3d $\left(1.3^{x} \sin (y), x=-1 . .2 \pi, y=0 . . \pi\right.$, coords $=$ spherical, style $=$ patch $)$;

- the help-window has two panels: the Help Navigator on the left and the help itself on the right - each help page contains some examples; copying an example and pasting it into the worksheet is possible

Content

- Basic Conventions
- Basic Data Structures
- Numerical Computation
- Symbolic Computations
- Programming with Maple
- The Maple Library
- Solving Equations
- Sequences, Limits and Series
- Points, Vectors, and Matrices

Basic Conventions

Entering a command, example

$\left[\begin{array}{ll}> & \text { restart, } \\ {[>}\end{array}\right.$

Arithmetic operators

Addition	+	$3+4$
Substraction	-	$x-y$
Multiplication	$*$	$2 * \mathrm{x}$
Division	$/$	x / y
Exponentiation	\wedge	$3 \wedge 4$
Factorial	$!$	$3!$

The precedence order follows the mathematical conventions:

$$
\begin{array}{ll}
>56-4 \cdot 2 ; & 48 \\
\gg(56-4) \cdot 2 ; \tag{2}
\end{array}
$$

Special commands to access previous results
\% latest one
$\%$ \% last but second command
\%\%\% last but third command

```
> \#this is a comment
\(>2 \cdot 4\); \# most recent result becomes 8
\(>\% \cdot 12.4\); \# this computes 8•12.4.99.2 becomes most recent result 99.2
\(>\% \%-\%\); \(\#\) computes 8 -99.2
\[
\begin{equation*}
-91.2 \tag{6}
\end{equation*}
\]
```

Defining Expressions with ":="

- expression: combination of numbers, variables and operators
- Syntax is name: =expression
- maybe most used concept in Maple
- notice the difference between an expression and a function:

Example

$$
\begin{array}{ll}
>f:=x^{2}-3 \cdot x+13 ; & f:=x^{2}-3 x+13 \\
{[>g:=x \rightarrow 3 \cdot x-3 ;} & g:=x \rightarrow 3 x-3 \\
{[>h(x):=3 \cdot x-4 ;} & h:=x \rightarrow 3 x-4 \\
& \\
\hline>\operatorname{plot}([f, h(x), g(x)], x=1 . .10) ; & \tag{9}
\end{array}
$$

If you make a mistake, you can go back with the cursor, change the command-line and re-execute the line.

Basic Data Structures

- fundamental data structures: expression sequences, lists, sets. (e.g. used as parameters in maple commands)

Sequences, implicitely or with command $\operatorname{seq}(\mathrm{f}(\mathrm{i}), \mathrm{i}=\mathrm{m} . . \mathrm{n})$
$>3,5, x, 4$;
$>s:=3,5, x, 4 ;$

$$
\begin{equation*}
s:=3,5, x, 4 \tag{11}
\end{equation*}
$$

$>\operatorname{evalf}(\pi)$;

$$
\begin{equation*}
3.141592654 \tag{12}
\end{equation*}
$$

$>t:=\operatorname{seq}\left(i^{2}, i=2 . .5\right)$;

$$
\begin{equation*}
t:=4,9,16,25 \tag{13}
\end{equation*}
$$

$>t 2:=3, t$

$$
\begin{equation*}
t 2:=3,4,9,16,25 \tag{14}
\end{equation*}
$$

A list

- is an expression sequence enclosed in square brackets
- preserves order and repetition of elements

A set

- is an expression sequence enclosed in curly brackets
- does not preserve order an does not contain the same element several times

$$
\begin{array}{ll}
>\text { list } 1:=[5,4,3,5,4,3] ; & \text { list } 1:=[5,4,3,5,4,3] \\
=>\text { list } 2:=[3,4,5] ; & \text { list } 2:=[3,4,5] \\
=>\text { set } 1:=\{5,4,3,5,4,3\} ; & \text { set } 1:=\{3,4,5\} \\
=>\text { set } 2:=\{4,5,3\} ; & \text { set } 2:=\{3,4,5\} \\
=s:=[\text { op (list } 2), \text { op (list } 2)] ; & s:=[3,4,5,3,4,5]
\end{array}
$$

Numerical Computation

Fraction numbers and floating point numbers

- fractions are not reduced to floating point approximations
- exact computations with fractions
- with evalf, the fraction can be converted to a floatring point number with Digits many digits.

$$
\begin{align*}
& \left\lceil>x:=\frac{9}{8}+\frac{6}{5} ;\right. \\
& x:=\frac{93}{40} \tag{20}\\
& >\operatorname{evalf}(\%) \text {; } \\
& 2.325000000 \\
& >\operatorname{evalf}(x) \text {; } \\
& 2.325000000 \\
& >\text { Digits }:=20 ; \\
& \text { Digits :=20 } \\
& 2.3250000000000000000 \tag{24}\\
& >\frac{9}{8.0}+\frac{6}{5} \text {; \# a floating number in the expression leads to implicit evalf } \\
& 2.3250000000000000000 \tag{25}
\end{align*}
$$

Integer numbers

- arbitrary large integers (as far as there is enough memory)

```
> 10000!;
28462596809170545189064132121198688901480514017027992307941799942744113400037\
    64443772990786757784775[...35460 digits...]
    000000000000000000000000000000000000000000000000000000000000000000000000000
    000000000000000000000000000
> Digits := 10;100.0!;
\[
\begin{gathered}
\text { Digits }:=10 \\
9.33262154410^{157}
\end{gathered}
\]
```


Complex Numbers

- a complex number z is of the form $\mathrm{a}+\mathrm{bi}$, with $i^{2}=-1$ and $\mathrm{a}, \mathrm{b} \in \mathbb{R} . \mathrm{a}=\operatorname{Re}(\mathrm{z})$ is the realpart of z and $b=\operatorname{Im}(z)$
is the imaginary part of z
- two complex numbers are equal if and only if their real parts and their imaginary parts are equal
- Complex numbers are added, subtracted, multiplied, and divided by formally apply ing the associative,
commutative and distributive laws of algebra, together with the equation i $2=-1$.
Addition $:(\mathrm{a}+\mathrm{bi})+(\mathrm{c}+\mathrm{di})=(\mathrm{a}+\mathrm{c})+(\mathrm{b}+\mathrm{d}) \mathrm{i}$
Substraction : $(\mathrm{a}+\mathrm{bi})-(\mathrm{c}+\mathrm{di})=(\mathrm{a}-\mathrm{c})+(\mathrm{b}-\mathrm{d}) \mathrm{i}$
Multiplication: $(a+b i) \cdot(c+d i)=(a c-b d)+(b c+a d) i$

Division $: \frac{a+b i}{c+d i}=\frac{a c+b d}{c^{2}+d^{2}}+\frac{b c-a d}{c^{2}+d^{2}} i$, with c or d not equal to 0

- with the given definitions of addition, substraction, multiplication, division, and the additive identity (zero-element) $0+0 \mathrm{i}$, the multiplicative identity (one-element) $1+0 \mathrm{i}$, the addidive inverse of a number a $+\mathrm{bi}:-\mathrm{a}-\mathrm{bi}$, and
the multiplicative inverse of $\mathrm{a}+\mathrm{bi}: \frac{a}{a^{2}+b^{2}}+\frac{-b}{a^{2}+b^{2}}$,
the complex numbers \mathbb{C} are a field (dt: Körper)

$$
\left[>\frac{(3+3 \cdot I)}{(2+6 \cdot I)}\right.
$$

$$
\begin{equation*}
\frac{3}{5}-\frac{3}{10} I \tag{28}
\end{equation*}
$$

$>\left(\frac{3}{3^{2}+5^{2}}+\frac{(-5)}{3^{2}+5^{2}} \cdot I\right) \cdot(3+5 \cdot I) ;$

$$
\begin{equation*}
1 \tag{29}
\end{equation*}
$$

Symbolic Computations

$$
\left[\begin{array}{r}
>c:=\left(\frac{a}{a^{2}+b^{2}}+\frac{-b}{a^{2}+b^{2}} \cdot I\right) \cdot(a+b \cdot I) \\
c:=\left(\frac{a}{a^{2}+b^{2}}-\frac{\mathrm{I} b}{a^{2}+b^{2}}\right)(a+\mathrm{I} b) \tag{30}
\end{array}\right.
$$

Simplifying an Expression

Maple knows many functions for symbolic expression computations. Here, the most commonly used ones.

The simplify command tries to find a simpler equivalent for a given expression. The rules for the simplification steps follow some heuristics (but of course, the chosen simplification steps themselves are correct).
$>$ simplify $(\%)$;

$$
\begin{equation*}
-\frac{-a^{2}-b^{2}}{a^{2}+b^{2}} \tag{31}
\end{equation*}
$$

$>$ simplify $(\%)$;

The following expression leads to a surprising answer. Why? Because somewhere above, we already defined x . Thus: be careful and alert!
$>\operatorname{simplify}\left(\sin (x)^{2} \cdot x^{4}+\cos (x)^{2} \cdot x^{4}\right)$;

$$
\begin{equation*}
\frac{74805201}{2560000} \tag{33}
\end{equation*}
$$

$>\operatorname{simplify}\left(\sin (y)^{2} \cdot y^{4}+\cos (y)^{2} \cdot y^{4}\right)$;

$$
\begin{equation*}
y^{4} \tag{34}
\end{equation*}
$$

restart,
$>$ simplify $\left(\sin (x)^{2} \cdot x^{4}+\cos (x)^{2} \cdot x^{4}\right)$;

$$
\begin{equation*}
x^{4} \tag{35}
\end{equation*}
$$

Expanding a Polynomial

The expand command produces a sum of products for polynomials.
A polynomial is a mathematical expression consisting of a sum of terms each of which is a product of a constant and one or more variables with non-negative integral powers. If there is only a single variable, x,
the general form is given by $a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n-1} x+a_{n}$ where the a_{i} are constants (called coefficients).

Examples:

$$
>\operatorname{restart}, p:=(x+3) \cdot(x-7) ; \quad p:=(x+3)(x-7)
$$

expand (p);

$$
\begin{equation*}
x^{2}-4 x-21 \tag{37}
\end{equation*}
$$

$>q:=(x+3) \cdot(x-7) \cdot(x+7) ; r:=(x+25) \cdot(x-7) \cdot(x+9) ;$ expand $\left(\right.$ simplify $\left.\left(\operatorname{expand}\left(\frac{q}{r}\right)\right)\right)$;

$$
\begin{align*}
q & :=(x+3)(x-7)(x+7) \\
r & :=(x+25)(x-7)(x+9) \\
\frac{x^{2}}{(x+25)(x+9)} & +\frac{10 x}{(x+25)(x+9)}+\frac{21}{(x+25)(x+9)} \tag{38}
\end{align*}
$$

Factorize a Polynomial Expression

The command factor is the op posite of theexpand command. It factorizes poly nomial exprressions.
$>\operatorname{factor}\left(x^{2}-1\right)$;

$$
\begin{equation*}
(x-1)(x+1) \tag{39}
\end{equation*}
$$

$>$ factor $(\% \%)$;

$$
\begin{equation*}
\frac{(x+3)(x+7)}{(x+25)(x+9)} \tag{40}
\end{equation*}
$$

Normalize fractions

Restructures rational expressions. If possible, an expression is converted to factored normal form. This is the form numerator/denominator, where the numerator and denominator are relatively prime poly nomials with integer coefficients.
I.e., common factors are canceled.

$$
>\operatorname{normal}\left(\frac{x^{5}}{x+1}+\frac{x^{4}}{x+1}\right)
$$

$>\operatorname{normal}\left(\frac{1}{x}+\frac{x}{x+1}\right)$;

$$
\begin{equation*}
\frac{x^{2}+x+1}{x(x+1)} \tag{42}
\end{equation*}
$$

$>\operatorname{normal}\left(\frac{1}{x}+\frac{x}{x+1}\right.$, expanded $)$;

$$
\begin{equation*}
\frac{x^{2}+x+1}{x^{2}+x} \tag{43}
\end{equation*}
$$

$>\operatorname{simplify}\left(\frac{x^{5}}{x+1}+\frac{x^{4}}{x+1}\right) ;$

$$
\begin{equation*}
x^{4} \tag{44}
\end{equation*}
$$

$>$ normal $\left(\frac{q}{r}\right)$; \#in the output are nominator and denominator relatively prime.

$$
\begin{equation*}
\frac{(x+3)(x+7)}{(x+25)(x+9)} \tag{45}
\end{equation*}
$$

$>\operatorname{normal}\left(\frac{q}{r}\right.$, expanded $)$;

$$
\begin{equation*}
\frac{x^{2}+10 x+21}{x^{2}+34 x+225} \tag{46}
\end{equation*}
$$

Programming with Maple

Simple commands

```
e.g. all direct commands we saw so far.
Comparison Operators (<,>,>,<=,>=)
```

$>a:=0 ; b:=1 ;$

$$
\begin{align*}
a & :=0 \\
b & :=1 \tag{47}
\end{align*}
$$

$>$ evalb $(a=0) ;$ \#evalb prints boolean results to screen true
$>\operatorname{evalb}(b>2)$;
false
$>\operatorname{evalb}(b+a \leq 0)$;
$>a:=0$;

$$
\begin{equation*}
a:=0 \tag{50}
\end{equation*}
$$

Flow Control (if, for, while, ...)

if $<$ conditional expression $>$ then $<$ statement sequence $>$ \mid elif<conditional expression> then $<$ statement sequence> \mid \mid else $<$ statement sequence $>\mid$
end if
(Note: Phrases located between || are optional.)
$>$ if $(a>0)$ then $f:=x^{2} \mathbf{f i}$;
$>$ if $(a=0)$ then $f:=x^{2} \mathbf{f i}$;

$$
\begin{equation*}
f:=x^{2} \tag{51}
\end{equation*}
$$

$>$ if $(a<9)$ then

$$
f:=x^{2}+1 ; \# " ; " \text { is necessary, because: several statements without structure }
$$

$g:=x^{2} \quad \#^{\prime \prime} ; "$ not necessary
else
$g:=x^{2}+1 ;$
$f:=x^{2}$
endif,

$$
\begin{gather*}
f:=x^{2}+1 \\
g:=x^{2} \tag{52}
\end{gather*}
$$

The for ...while ... do loop
$=>$
$>$

1) Print even numbers from 6 to 10 .
$>$ for i from 6 by 2 to 10 do print(i) enddo;
2) Find the sum of all two-digit odd numbers from 11 to 99 .
$>$ mysum:=0:
for i from 11 by 2 while $i<100$ do
mysum := mysum $+i$, \#print(mysum);
end do: \#a ; instead a : leads to different outputs
mysum;
