
(1)(1)

Maple

 Properties
 - Software package
 - implemented in the programing language C
 - available for many Operating Systems, e.g. Windows, Unix, Linux
 - desined for numerical and symbolic expressions

 - includes untilities for algebra, calculus, discrete mathematics, graphics, ...

 History
 - 1980: first development at the University of Waterloo, Canada
 - 1988: Waterloo Maple Software was founded in order to sell and improve the software
 - currently: version 12

8
 Getting started
 - login to one of the machines in the pool in the Piloty building
 - open a shell / a terminal
 - type: xmaple (or maple, if you would like to work without windows; e.g. remote from home)

 Menu bar at the top:
 - allows you to save or load and edit your maple session
 e.g. clicking on the File menu and selecting Save allows to save the current worksheet
 - below the menu bar, there is a collection of shortcut-buttons

 Maple Help
 - help menu, "Maple Help"
 - ?command; e.g. ?solve, if you know the keyword in advance

plot cos
x
2

C sin 2 x , x = 0 ..4 p ;

x
2 4 6 8 10 12

K1,5

K1

K0,5

0

0,5

1

1,5

plot3d 1.3x sin y , x =K1 ..2 p, y = 0 ..p, coords = spherical, style = patch ;

• •

• •

• •

• •

• •

• •

• •

• •
• •

 - the help-window has two panels: the Help Navigator on the left and the help itself on the right
 - each help page contains some examples; copying an example and pasting it into the worksheet is
possible

Content

Basic Conventions
Basic Data Structures
Numerical Computation
Symbolic Computations
Programming with Maple
The Maple Library
Solving Equations
Sequences, Limits and Series
Points, Vectors, and Matrices

O O

O O

(4)(4)
O O

O O

O O

(5)(5)
O O

(2)(2)
O O

(6)(6)

O O

O O

(3)(3)

Basic Conventions

 Entering a command, example

restart;

 Arithmetic operators

Addition C 3C 4

Substraction K xK y

Multiplication * 2*x

Division / x / y

Exponentiation ^ 3^4

Factorial ! 3!

 The precedence order follows the mathematical conventions:

56K 4$2;
48

56K 4 $2;
104

 Special commands to access previous results
 % latest one
 %% last but second command
 %%% last but third command

#this is a comment
2$4; # most recent result becomes 8

8

% $ 12.4; # this computes 8$12.4. 99.2 becomes most recent result
99.2

%%K%; # computes 8-99.2
K91.2

 Defining Expressions with ":="
 - expression: combination of numbers, variables and operators

O O

O O

(8)(8)

(7)(7)

O O

O O

(9)(9)

O O

 - Syntax is name:=expression
 - maybe most used concept in Maple
 - notice the difference between an expression and a function:

 Example
f d x2K 3$xC 13;

f := x2K 3 xC 13

g d x / 3$xK 3;
g := x/3 xK 3

h x d 3 $xK 4;
h := x/3 xK 4

plot f, h x , g x , x = 1 ..10 ;

x
1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

80

 If you make a mistake, you can go back with the cursor, change the command-line and re-execute the
line.

O O

(14)(14)

O O

O O

O O
(12)(12)

(16)(16)

O O

(11)(11)

O O

O O

(19)(19)

(13)(13)

(10)(10)

(15)(15)

(18)(18)

O O

O O

O O

(17)(17)

Basic Data Structures

 - fundamental data structures: expression sequences, lists, sets. (e.g. used as parameters in maple
commands)

 Sequences, implicitely or with command seq(f(i),i=m..n)
3, 5, x, 4;

3, 5, x, 4

s d 3, 5, x, 4;
s := 3, 5, x, 4

evalf p ;
3.141592654

t d seq i2, i = 2 ..5 ;
t := 4, 9, 16, 25

t2 d 3, t;
t2 := 3, 4, 9, 16, 25

 A list
 - is an expression sequence enclosed in square brackets
 - preserves order and repetition of elements

 A set
 - is an expression sequence enclosed in curly brackets
 - does not preserve order an does not contain the same element several times

list1 d 5, 4, 3, 5, 4, 3 ;
list1 := 5, 4, 3, 5, 4, 3

list2 d 3, 4, 5 ;
list2 := 3, 4, 5

set1 d 5, 4, 3, 5, 4, 3 ;
set1 := 3, 4, 5

set2 d 4, 5, 3 ;
set2 := 3, 4, 5

s d op list2 , op list2 ;
s := 3, 4, 5, 3, 4, 5

Numerical Computation

 Fraction numbers and floating point numbers

 - fractions are not reduced to floating point approximations
 - exact computations with fractions
 - with evalf, the fraction can be converted to a floatring point number with Digits many digits.

O O

(21)(21)

(23)(23)

O O

(26)(26)

(20)(20)

O O

O O

O O

(24)(24)
O O

(25)(25)

O O

O O

(27)(27)

O O

O O

(22)(22)

x d
9
8
C

6
5

;

x :=
93
40

evalf % ;
2.325000000

evalf x ;
2.325000000

Digits d 20;
Digits := 20

evalf x ;
2.3250000000000000000

9
8.0

C
6
5

; # a floating number in the expression leads to implicit evalf

2.3250000000000000000

 Integer numbers

 - arbitrary large integers (as far as there is enough memory)

10000!;
28462596809170545189064132121198688901480514017027992307941799942744113400037\

64443772990786757784775[...35460 digits...]
00
00000000000000000000000000

Digits d 10; 100.0!;
Digits := 10

9.332621544 10157

 Complex Numbers
 - a complex number z is of the form a + bi, with i2= -1 and a,b ∈ℝ. a = Re(z) is the realpart of z and
b=Im(z)
 is the imaginary part of z
 - two complex numbers are equal if and only if their real parts and their imaginary parts are equal

 - Complex numbers are added, subtracted, multiplied, and divided by formally applying the
associative,
 commutative and distributive laws of algebra, together with the equation i 2 = -1.
 Addition : (a+bi) + (c+di) = (a+c) + (b+d)i
 Substraction : (a+bi) - (c+di) = (a-c) + (b-d)i
 Multiplication: aC bi $ cC di = acK bd C bcC ad i

O O

O O

(28)(28)

O O

O O

(30)(30)

(31)(31)

(29)(29)

O O

(32)(32)
O O

O O

 Division :
aC bi
cC di =

acC bd
c2C d 2 C

bcK ad
c2C d 2 i, with c or d not equal to 0

 - with the given definitions of addition, substraction, multiplication, division, and
 the additive identity (zero-element) 0 + 0i,
 the multiplicative identity (one-element) 1 + 0i,
 the addidive inverse of a number a + bi: -a - bi, and

 the multiplicative inverse of a + bi:
a

a2C b 2 C
Kb

a2C b 2 ,

 the complex numbers ℂ are a field (dt: Körper)

3C 3$I
2C 6$I ;

3
5
K

3
10

 I

3
32C 52 C

K5
32C 52 $I $ 3C 5$I ;

1

Symbolic Computations

c d
a

a2C b 2 C
Kb

a2C b 2 $I $ aC b$I ;

c :=
a

a2C b 2 K
I b

a2C b 2 aC I b

Simplifying an Expression

Maple knows many functions for symbolic expression computations. Here, the most commonly used
ones.

The simplify command tries to find a simpler equivalent for a given expression. The rules for the
simplification steps follow some heuristics (but of course, the chosen simplification steps themselves
are correct).

simplify % ;

K
Ka2K b 2

a2C b 2

simplify % ;
1

(37)(37)

O O

O O

O O

O O

O O

(35)(35)

O O

(36)(36)

(38)(38)

(33)(33)

O O

O O

O O
(34)(34)

 The following expression leads to a surprising answer. Why? Because somewhere above, we already
 defined x. Thus: be careful and alert!

simplify sin x 2$x4C cos x 2$x4 ;
74805201
2560000

simplify sin y 2$y4C cos y 2$y4 ;
y4

restart;
simplify sin x 2$x4C cos x 2$x4 ;

x4

Expanding a Polynomial

The expand command produces a sum of products for polynomials.
A polynomial is a mathematical expression consisting of a sum of terms each of which is a product of a
constant and one or more variables with non-negative integral powers. If there is only a single variable,
x,
the general form is given by a0xn + a1xn- 1 + a2xn-2 + ... + an-1x + an, where the ai are constants (called
coefficients).

Examples:

restart; p d x C 3 $ xK 7 ;
p := xC 3 xK 7

expand p ;
x2K 4 xK 21

q d xC 3 $ xK 7 $ xC 7 ; r d xC 25 $ xK 7 $ xC 9 ;

 expand simplify expand q
r ;

q := xC 3 xK 7 xC 7
r := xC 25 xK 7 xC 9

x2

xC 25 xC 9
C

10 x
xC 25 xC 9

C
21

xC 25 xC 9

Factorize a Polynomial Expression

The command factor is the opposite of the expand command. It factorizes polynomial exprressions.

(44)(44)

O O

(45)(45)

(39)(39)

O O

O O

(42)(42)

(40)(40)

(46)(46)

O O

O O

(43)(43)

O O

(41)(41)

O O

O O

factor x2K 1 ;
xK 1 xC 1

factor %% ;
xC 3 xC 7
xC 25 xC 9

Normalize fractions

Restructures rational expressions. If possible, an expression is converted to factored normal form. This
is the form numerator/denominator, where the numerator and denominator are relatively prime
polynomials with integer coefficients.
I.e., common factors are canceled.

normal x5

xC 1
C

x4

xC 1
;

x4

normal 1
x C

x
xC 1

;

x2C xC 1
x xC 1

normal 1
x C

x
xC 1

, expanded ;

x2C xC 1
x2C x

simplify x5

xC 1
C

x4

xC 1
;

x4

normal q
r ; #in the output are nominator and denominator relatively prime.

xC 3 xC 7
xC 25 xC 9

normal q
r , expanded ;

x2C 10 xC 21
x2C 34 xC 225

Programming with Maple

Simple commands

(47)(47)

O O

O O
O O

O O

O O

(39)(39)

(51)(51)

O O

(49)(49)

O O

O O

(50)(50)

(52)(52)

O O

O O

(48)(48)

O O

O O

e.g. all direct commands we saw so far.

Comparison Operators (<, >, >, <=, >=)

a d 0; b d 1;
a := 0
b := 1

evalb a = 0 ; #evalb prints boolean results to screen
true

evalb b O 2 ;
false

evalb bC a % 0 ;
a d 0;

a := 0

Flow Control (if, for, while, ...)

 if <conditional expression> then <statement sequence>
 | elif <conditional expression> then <statement sequence> |
 | else <statement sequence> |
 end if
 (Note: Phrases located between | | are optional.)

if a O 0 then f d x2 fi;
if a = 0 then f d x2 fi;

f := x2

if a ! 9 then
 f d x2 C 1; # ";" is necessary, because: several statements without structure
 g d x2 # ";" not necessary
 else
 g d x2C 1;
 f d x2

 end if;
f := x2C 1

g := x2

 The for ...while ... do loop

O O

O O

(39)(39)

O O

(53)(53)

(54)(54)

1) Print even numbers from 6 to 10.
for i from 6 by 2 to 10 do print i end do;

6
8
10

2) Find the sum of all two-digit odd numbers from 11 to 99.
mysum d 0 :
for i from 11 by 2 while i ! 100 do
 mysum d mysumC i;
 #print mysum ;
 end do: #a ; instead a : leads to different outputs
 mysum;

2475

