
Appendix C

Measure and Integration Theory

We begin with some general set-theoretic notions. Let Ω be a set. Then its power

set is denoted by

P(Ω) :=
{

A : A ⊂ Ω
}

.

Given A ⊂ Ω its complement is denoted by Ac := Ω \A, and its characteristic

function 1A is defined by

1A(x) :=

{

1 (x ∈ A)

0 (x /∈ A)

for x ∈ Ω . One often writes 1 in place of 1Ω if the reference set Ω is understood.

For a sequence (An)n ⊂ P(Ω) we write An ↘ A if

An ⊃ An+1 (n ∈ N) and
⋂

n∈N
An = A.

Similarly, An ↗ A is short for

An ⊂ An+1 (n ∈ N) and
⋃

n∈N
An = A.

A family (Aι)ι ⊂ P(Ω) is called pairwise disjoint if ι 6= η implies that Aι ∩Aη =
/0. A subset E ⊂ P(Ω) is often called a set system on Ω . A set system is called

∩-stable (∪-stable, \-stable) if A,B ∈ E implies that A∩B (A∪B, A\B) belongs to

E as well. If E is a set system, then any mapping µ : E−→ [0,∞] is called a (positive)

set function. Such a set function is called σ -additive if

µ

(

∞
⋃

n=1

An

)

=
∞

∑
n=1

µ(An).

whenever (An)n∈N ⊂ E is pairwise disjoint and
⋃

n An ∈ E. Here we adopt the con-

vention that

a+∞ = ∞+a = ∞ (−∞ < a ≤ ∞).
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A similar rule holds for sums a +(−∞) where a ∈ [−∞,∞). The sum ∞ +(−∞) is

not defined. Other conventions for computations with the values ±∞ are:

0 ·±∞ = ±∞ ·0, α ·±∞ = ±∞ ·α = ±∞ β ·±∞ = ±∞ ·β = ∓∞

for β < 0 < α . If f : Ω −→ Ω ′ is a mapping and B ⊂ Ω ′ then we denote

[ f ∈ B ] := f−1(B) :=
{

x ∈ Ω : f (x) ∈ B
}

.

Likewise, if P(x1, . . .xn) is a property of n-tuples (x1, . . . ,xn) ∈ (Ω ′)n and f1, . . . fn :

Ω −→ Ω ′ are mappings, then we write

[P( f1, . . . fn) ] :=
{

x ∈ Ω : P( f1(x), . . . , fn(x)) holds
}

.

E.g., for f ,g : Ω −→ Ω ′ we abbreviate [ f = g ] := {x ∈ Ω : f (x) = g(x)}.

C.1 σ -Algebras

Let Ω be any set. A σ -algebra is a collection Σ ⊂P(Ω) of subsets of Ω , such that

the following hold:

1) /0,Ω ∈ Σ .

2) If A,B ∈ Σ then A∪B,A∩B,A\B ∈ Σ .

3) If (An)n∈N ⊂ Σ , then
⋃

n∈N An,
⋂

n∈N An ∈ Σ .

If a set system Σ satisfies merely 1) and 2), it is called an algebra, and if Σ satisfies

just 2) and /0 ∈ Σ , then it is called a ring. A pair (Ω ,Σ) with Σ being a σ -algebra

on Ω is called a measurable space.

An arbitrary intersection of σ -algebras over the same set Ω is again a σ -algebra.

Hence for E ⊂ P(Ω) one can form

σ(E) :=
⋂
{

Σ : E ⊂ Σ ⊂ P(Ω), Σ a σ -algebra
}

,

the σ -algebra generated by E. It is the smallest σ -algebra that contains all sets from

E. If Σ = σ(E), we call E a generator of Σ .

If Ω is a topological space, the σ -algebra generated by all open sets is called the

Borel σ -algebra B(Ω). By 1) and 2), B(Ω) contains all closed sets as well. A set

belonging to B(Ω) is called a Borel set or Borel measurable.

Lemma C.1. Let Ω be a topological space, and let A ⊂ Ω with the subspace topol-

ogy. Then B(A) = {A∩B : B ∈ B(Ω)}.

Consider the example that Ω = [−∞,∞] is the extended real line. This becomes

a compact metric space via the (order-preserving) homeomorphism
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arctan : [−∞,∞] −→ [−π/2,π/2].

The subspace topology of R coincides with its natural topology. The Borel algebra

B([−∞,∞]) is generated by {(α,∞] : α ∈ R}.

A Dynkin system (also called λ -system) on a set Ω is a subset D⊂P(Ω) with

the following properties:

1) Ω ∈ D.

2) If A,B ∈ D and A ⊂ B then B\A ∈ D.

3) If (An)n ⊂ D then
⋃

n An ∈ D.

Theorem C.2 (Dynkin). If D is a Dynkin system and E ⊂ D is ∩-stable, then

σ(E) ⊂ D.

The proof is in [Bauer (1990), p.8] and [Billingsley (1979), Thm. 3.2].

C.2 Measures

Let Ω be a set and Σ ⊂ P(Ω) a σ -algebra of subsets of Ω . A (positive) measure

is a σ -additive set function

µ : Σ −→ [0,∞].

In this case the triple (Ω ,Σ ,µ) is called a measure space and the sets in Σ are called

measurable sets. If µ(Ω) < ∞, the measure is called finite. If µ(Ω) = 1, it is called

a probability measure and (Ω ,Σ ,µ) is called a probability space. Suppose E⊂ Σ
is given and there is a sequence (An)n ⊂ E such that

µ(An) < ∞ (n ∈ N) and Ω =
⋃

n∈N

An;

then the measure µ is called σ -finite with respect to E. If E = Σ , we simply call it

σ -finite.

From the σ -additivity of the measure one derives the following properties:

a) (Finite Additivity) µ( /0) = 0 and

µ(A∪B)+ µ(A∩B) = µ(A)+ µ(B) (A,B ∈ Σ).

b) (Monotonicity) A,B ∈ Σ , A ⊂ B =⇒ µ(A) ≤ µ(B).

c) (σ -Subadditivity) (An)n ⊂ Σ =⇒ µ(
⋃

n∈N An) ≤ ∑
∞
n=1 µ(An).

See [Billingsley (1979), p.134] for the elementary proofs.

An application of Dynkin’s theorem yields the uniqueness theorem.
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Theorem C.3 (Uniqueness Theorem). [Billingsley (1979), Thm. 10.3]

Let Σ = σ(E) with E being ∩-stable. Let µ,ν be two measures on Σ , both σ -finite

with respect to E. If µ and ν coincide on E, they are equal.

C.3 Construction of Measures

An outer measure on a set Ω is a mapping

µ∗ : P(Ω) −→ [0,∞]

such that µ∗( /0) = 0 and µ∗ is monotone and σ -subadditive.

Theorem C.4 (Carathéodory). [Billingsley (1979), Thm. 11.1] Let µ∗ be an

outer measure on the set Ω . Define

M (µ∗) :=
{

E ⊂ Ω : µ∗(A) = µ∗(A∩E)+ µ∗(A\E) ∀A ⊂ Ω
}

.

Then M (µ∗) is a σ -algebra and µ∗
∣

∣

M (µ∗)
is a measure on it.

The set system E ⊂ P(Ω) is called a semi-ring if it satisfies the following two

conditions:

1) E is ∩-stable and /0 ∈ E.

2) If A,B ∈ E then A\B is a disjoint union of members of E.

An example of such a system is E = {(a,b] : a ≤ b} ⊂ P(R). If E is a semi-ring

then the system of all disjoint unions of members of E is a ring.

Theorem C.5 (Hahn). [Billingsley (1979), p.140] Let E be a semi-ring on a set

Ω and let µ : E −→ [0,∞] be σ -additive on E. Then µ∗ : P(Ω) −→ [0,∞] defined

by

µ∗(A) := inf
{

∑n∈N
µ(En) : (En)n ⊂ E, A ⊂

⋃

n∈N
En

}

(A ∈ P(Ω))

is an outer measure. Moreover, σ(E) ⊂ M (µ∗) and µ∗|E = µ .

One may summarise these results in the following way: if a set function on a

semi-ring E is σ -additive on E then it has a extension to a measure on σ(E). If in

addition Ω is σ -finite with respect to E, then this extension is unique.

Sometimes, for instance in the construction of infinite products, it is convenient

to work with the following criterion.

Lemma C.6. [Billingsley (1979), Thm. 10.2] Let E be an algebra on a set Ω , and

let µ : E −→ [0,∞) be a finitely additive set function with µ(Ω) < ∞. Then µ is

σ -additive on E if and only if for each decreasing sequence (An)n ⊂ E, An ↘ /0, one

has µ(An) → 0.
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C.4 Measurable Functions and Mappings

Let (Ω ,Σ) and (Ω ′,Σ ′) be measurable spaces. A mapping ϕ : Ω −→ Ω ′ is called

measurable if

[ϕ ∈ A ] ∈ Σ (A ∈ Σ ′).

(It suffices to check this condition for each A from a generator of Σ ′.) We denote by

M(Ω ;Ω ′) = M(Ω ,Σ ;Ω ,Σ ′)

the set of all measurable mappings between Ω and Ω ′. For the special case Ω ′ =
[0,∞] we write

M+(Ω) :=
{

f : Ω −→ [0,∞] : f is measurable
}

.

Example: For A ∈ Σ its characteristic function 1A is measurable, since one has

[1A ∈ B ] = /0,A,Ac,Ω , depending on whether or not 0 respectively 1 is contained in

B.

Example: If Ω ,Ω ′ are topological spaces and ϕ : Ω −→ Ω ′ is continuous, then

it is B(Ω)−B(Ω ′) measurable.

Lemma C.7. [Lang (1993), p.117] Let Ω ′ be a metric space and Σ = B(Ω ′) its

Borel algebra. If ϕn : Ω −→Ω ′ is measurable for each n∈N and ϕn →ϕ pointwise,

then ϕ is measurable as well.

The following lemma summarises the basic properties of positive measurable

functions.

Lemma C.8. [Billingsley (1979), Section 13] Let (Ω ,Σ ,µ) be a measure space.

Then the following assertions hold.

a) If f ,g ∈ M+(Ω),α ≥ 0, then f g, f +g,α f ∈ M+(Ω).

b) If f ,g ∈ M(Ω ;R) and α,β ∈ R, then f g,α f +βg ∈ M(Ω ;R).

c) f ,g : Ω −→ [−∞,∞] are measurable then − f ,min{ f ,g},max{ f ,g} are mea-

surable.

d) If fn : Ω −→ [−∞,∞] is measurable for each n ∈ N then supn fn, infn fn are

measurable.

A simple function on a measure space (Ω ,Σ ,µ) is a linear combination of char-

acteristic functions of measurable sets. Positive measurable functions can be ap-

proximated by simple functions:

Lemma C.9. [Billingsley (1979), Thm. 13.5] Let f : Ω −→ [0,∞] be measurable.

Then there exists a sequence of simple functions ( fn)n such that

0 ≤ fn ≤ fn+1 ↗ f (pointwise as n → ∞).

If f is bounded, the convergence is uniform.
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C.5 The Integral of Positive Measurable Functions

Given a measure space (Ω ,Σ ,µ) and a positive simple function

f =
n

∑
j=1

α j1A j

on Ω , one defines its integral by

∫

Ω
f dµ :=

n

∑
j=1

α jµ(A j).

By using common refinements one can show that this definition is independent of

the actual representation of f as a linear combination of characteristic functions. For

a general f ∈ M+(Ω) one defines

∫

Ω
f dµ := lim

n

∫

Ω
fn dµ

where ( fn)n is an arbitrary sequence of simple functions with 0 ≤ fn ↗ f point-

wise. (This is the way of [Bauer (1990), Chapter 11] and [Rana (2002), Section

5.2]; [Billingsley (1979), Section 15] takes a similar, but slightly different route.)

Theorem C.10. The integral for positive measurable functions has the following

properties.

a) (Action on Characteristic Functions) (A ∈ Σ )

∫

Ω
1A dµ = µ(A).

b) (Additivity and homogeneity) ( f ,g ∈ M+(Ω),α ≥ 0)

∫

Ω
( f +αg)dµ =

∫

Ω
f dµ +α

∫

Ω
gdµ.

c) (Monotonicity) ( f ,g ∈ M+(Ω))

f ≤ g ⇒
∫

Ω
f dµ ≤

∫

Ω
gdµ.

d) (Beppo Levi, Monotone Convergence Theorem) Let ( fn)n∈N ⊂ M+(Ω)
such that 0 ≤ f1 ≤ f2 ≤ . . . and fn → f pointwise, then

∫

Ω
f dµ = lim

n→∞

∫

Ω
fn dµ.

e) (Fatou’s lemma) Let ( fn)n∈N ⊂ M+(Ω). Then
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∫

Ω
liminf

n→∞
fn dµ ≤ liminf

n→∞

∫

Ω
fn dµ.

Let 1 ≤ p ≤ ∞. Then its dual exponent is the unique number q = p′ ∈ [1,∞] such

that
1

p
+

1

q
= 1.

Theorem C.11 (Hölder’s Inequality). Let (Ω ,Σ ,µ) be a measure space, let

f ,g ∈ M+(Ω), and let 1 < p < ∞ with dual exponent q. Then f g, f p,gq ∈ M+(Ω)
as well and

∫

Ω
f gdµ ≤

(

∫

Ω
f p dµ

)1/p (∫

Ω
gq dµ

)1/q

.

See [Haase (2007)] for a nice proof.

C.6 Push-forward Measures and Measures with Density

If (Ω ,Σ ,µ) is a measure space, (Ω ′,Σ ′) is a measurable space and ϕ : Ω −→ Ω ′ is

measurable, then a measure is defined on Σ ′ by

[ϕ∗µ](B) := µ[ϕ ∈ B] (B ∈ Σ).

The measure ϕ∗µ is called the image of µ under ϕ , or the push-forward of µ along

ϕ . If µ is finite or a probability measure, so is ϕ∗µ . If f ∈ M+(Ω ′) then

∫

Ω ′
f d(ϕ∗µ) =

∫

Ω
( f ◦ϕ)dµ.

Let (Ω ,Σ ,µ) be a measure space and f ∈ M+(Ω). Then by

( f µ)(A) :=
∫

A
f dµ :=

∫

Ω
1A f dµ (A ∈ Σ)

a new measure f µ on Σ is defined. We call f the density function of f µ . One has

∫

Ω
g d( f µ) =

∫

Ω
g f dµ.

for all g ∈ M+(Ω ′). [Billingsley (1979), Thm. 16.10 and 16.12].

Let µ,ν be two measures on Σ . We say that ν is absolutely continuous with

respect to µ , written ν � µ , if A∈ Σ , µ(A) = 0 implies ν(A) = 0. Clearly, if ν = f µ
with a density f , then ν is absolutely continuous with respect to µ . The converse is

true under σ -finiteness conditions.

Theorem C.12 (Radon–Nikodym I). Let (Ω ,Σ ,µ) be a σ -finite measure space,

and let ν be a σ -finite measure on Σ , absolutely continuous with respect to µ . Then

there is f ∈ M+(Ω) such that ν = f µ .
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In [Billingsley (1979), Thm. 32.2] and [Bauer (1990), Satz 17.10] the proof is based

on the so-called “Hahn decomposition” of signed measures; the Hilbert space ap-

proach of von Neumann is reproduced in [Rudin (1987), 6.10].

C.7 Product Spaces

If (Ω1,Σ1) and (Ω2,Σ2) are measurable spaces, then on the product space Ω1 ×Ω2

we define the product σ -algebra

Σ1 ⊗Σ2 := σ
{

A×B : A ∈ Σ1, B ∈ Σ2

}

.

If E j is a generator of Σ j with Ω j ∈ E j for j = 1,2, then

E1 ×E2 :=
{

A×B : A ∈ E1, B ∈ E2

}

is a generator of Σ1 ⊗Σ2. As a consequence we obtain:

Lemma C.13. Let Ω1,Ω2 be second countable topological (e.g., separable metric)

spaces. Then

B(Ω1 ⊗Ω2) = B(Ω1)⊗B(Ω2).

If (Ω ,Σ) is another measurable space, then a mapping f = ( f1, f2) : Ω −→ Ω1×
Ω2 is measurable if and only if the projections f1 = π1 ◦ f , f2 = π2 ◦ f are both

measurable.

If f : (Ω1 ×Ω2,Σ1 ⊗Σ2) −→ (Ω ′,Σ ′) is measurable, then f (x, ·) : Ω2 −→ Ω ′ is

measurable, for every x ∈ Ω1, see [Billingsley (1979), Theorem 18.1].

Theorem C.14 (Tonelli). [Billingsley (1979), Theorem 18.3] Let (Ω j,Σ j,µ j),
j = 1,2, be σ -finite measure spaces and f ∈ M+(Ω1 ×Ω2). Then the functions

F1 :Ω1 −→ [0,∞], x 7−→
∫

Ω2

f (x, ·)dµ2

F2 :Ω2 −→ [0,∞], y 7−→
∫

Ω1

f (·,y)dµ1

are measurable and there is a unique measure µ1 ⊗µ2 such that

∫

Ω1

F1 dµ1 =
∫

Ω1×Ω2

f d(µ1 ⊗µ2) =
∫

Ω2

F2 dµ2.

The measure µ1 ⊗ µ2 is called the product measure of µ1,µ2. Note that for the

particular case F = f1 ⊗ f2, with

( f1 ⊗ f2)(x1,x2) := f1(x1) · f2(x2) ( f j ∈ M+(Ω j),x j ∈ Ω j ( j = 1,2)),

we obtain



C.7 Product Spaces 1031

∫

Ω1×Ω2

( f1 ⊗ f2)d(µ1 ⊗µ2) =

(

∫

Ω1

f1 dµ1

) (

∫

Ω2

f2 dµ2

)

.

Infinite Products and Ionescu Tulcea’s Theorem

For a measurable space (Ω ,Σ) we denote by M+(Ω ,Σ) the set of all positive and by

M1(Ω ,Σ) the set of all probability measures on (Ω ,Σ). There is a natural σ -algebra

Σ̃ on M+(Ω ,Σ), the smallest such that each mapping

M+(Ω ,Σ) −→ [0,∞], ν 7−→ ν(A) (A ∈ Σ)

is measurable.

Let (Ω j,Σ j), j = 1,2 be measurable spaces. A measure kernel from Ω1 to Ω2

is a measurable mapping µ : Ω2 −→ M+(Ω1,Σ1). Such a kernel µ can also be

interpreted as a mapping of two variables

µ : Ω2 ×Σ −→ [0,∞],

and we shall do so when it seems convenient. If µ(y, ·)∈M1(Ω1,Σ1) for each y∈Ω2

then µ is called a probability kernel.

Let (Ω ,Σ) be another measurable space, and let µ : Ω2 −→ M+(Ω1,Σ1) be a

kernel. Then there is an induced operator

Tµ : M+(Ω ×Ω1) −→ M+(Ω ×Ω2)

(Tµ f )(x,x2) :=
∫

Ω1

f (x,x1)µ(x2,dx1) (x ∈ Ω ,x2 ∈ Ω2).

The operator Tµ is additive and positively homogeneous, and if fn ↗ f pointwise

on Ω1 then Tµ fn ↗ Tµ f pointwise on Ω2. Moreover,

Tµ( f ⊗g) = ( f ⊗1) ·Tµ(1⊗g) ( f ∈ M+(Ω),g ∈ M+(Ω2)).

Conversely, each operator T : M+(Ω ×Ω1)−→M+(Ω ×Ω2) with these properties

is of the form Tµ , for some kernel µ .

If µ : Ω2 −→ M+(Ω1) and ν : Ω3 −→ M+(Ω2) are kernels, then Tν ◦Tµ = Tη

for

η(x3,A) :=
∫

Ω2

µ(x2,A)ν(x3,dx2) (x3 ∈ Ω3,A ∈ Σ1).

Kernels can be used to construct measures on infinite products. Let (Ωn,Σn),
n ∈ N, be measurable spaces, and let Ω := ∏n∈N Ωn be the Cartesian product, with

the projections πn : Ω −→ Ωn. The natural σ -algebra on Ω is

⊗

n

Σn := σ
{

π−1
n (An) : n ∈ N, An ∈ Σn

}

.

A generating algebra is
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A :=
{

An × ∏
k>n

Ωk : n ∈ N, An ∈ Σ1 ⊗ . . .⊗Σn

}

,

the algebra of cylinder sets.

Theorem C.15 (Ionescu Tulcea). [Ethier and Kurtz (1986), p.504] Let (Ωn,Σn),
n ∈ N, be measurable spaces, let

µn : Ω1 ×·· ·×Ωn−1 −→ M1(Ωn) (n ∈ N, n ≥ 2)

be probability kernels, and let µ1 be a probability measure on Ω1. Let

X (n) := Ω1 ×·· ·×Ωn with Σ (n) = Σ1 ⊗ . . .⊗Σn.

Let, for n ≥ 1, Tn : M+(X (n),Σ (n)) −→ M+(X (n−1),Σ (n−1)) be given by

(Tn f )(x(n−1)) =
∫

Ωn

f (x(n−1),xn)µn(x
(n−1),dxn) (x(n−1) ∈ X (n−1)).

Then there is a unique probability measure ν on X (∞) := ∏n∈N Ωn such that

∫

X(∞)
f (x1, . . . ,xn)dν(x1, . . .) = T1T2 . . .Tn f ( f ∈ M+(Ω1 ×·· ·×Ωn))

for every n ∈ N.

An important special case of the Ionescu Tulcea theorem is the construction of

the infinite product measure. Here one has a probability measure νn on (Ωn,Σn), for

each n ∈ N. If one applies the Ionescu Tulcea theorem with µn ≡ νn, then the ν of

the theorem satisfies

(π1, . . . ,πn)∗ν = ν1 ⊗ . . .⊗νn (n ∈ N).

We write ν :=
⊗

n νn and call it the product of the νn. For products of uncountably

many probability spaces see [Hewitt and Stromberg (1969), Chapter 22].

C.8 Null Sets

Let (Ω ,Σ ,µ) be a measure space. A set A ⊂ Ω is called a null set or negligible if

there is a set N ∈ Σ such that A ⊂ N and µ(N) = 0. (In general a null set need not

be measurable). Null sets have the following properties:

a) If A is a null set and B ⊂ A then B is also a null set.

b) If An is a null set (n ∈ N), then
⋃

n An is a null set.

Lemma C.16. [Billingsley (1979), Theorem 15.2] Let (Ω ,Σ ,µ) be a measure

space and let f : Ω −→ [−∞,∞] be measurable. Then the following assertions hold.
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a)
∫

Ω | f |dµ = 0 if and only if the set [ f 6= 0 ] = [ | f | > 0 ] is a null set.

b) If
∫

Ω | f | dµ < ∞, then the set [ | f | = ∞ ] is a null set.

One says that two functions f ,g are equal µ-almost everywhere (abbreviated by

“ f = g a.e.” or “ f ∼µ g”) if the set [ f 6= g ] is a null set. More generally, let P be a

property of points of Ω . Then P is said to hold almost everywhere or for µ-almost

all x ∈ Ω if the set
{

x ∈ Ω : P does not hold for x
}

is a µ-null set. If µ is understood, we leave out the reference to it.

For each set Ω ′, the relation ∼µ (“is equal µ-almost everywhere to”) is an equiv-

alence relation on the space of mappings from Ω to Ω ′. For such a mapping f we

sometimes denote by [ f ] its equivalence class, in situations when notational clar-

ity is needed. If µ is understood, we write simply ∼ instead of ∼µ . By choosing

Ω = {0,1} an equivalence relation on Σ is induced via

A ∼ B
Def.
⇐⇒ 1A = 1B µ-a.e. ⇐⇒ µ(A4B) = 0.

The space of equivalence classes Σ/∼ is called the measure algebra. For a set A∈Σ
we sometimes write [A ] for its equivalence class with respect to ∼, but usually we

omit the brackets and simply write A again. Clearly, if f = g µ-a.e. then [ f ∈ B ] ∼
[g ∈ B ] for every B ⊂ Ω ′. The usual set-theoretic operations can be induced on the

elements of Σ/∼ by setting

[A]∩ [B] := [A∩B],
⋃

n
[An] :=

[
⋃

n
An

]

. . . .

Also, one defines

µ[A] := µ(A) =
∫

Ω
1A dµ (A ∈ Σ)

and writes /0 := [ /0] again. Hence on the measure algebra, µ(A) = 0 if and only if

A = /0.

C.9 Convergence in Measure

Let (Ω ,Σ ,µ) be a σ -finite measure space and (X ,d) a complete metric space, with

its Borel σ -algebra. Let

Ms(Ω ,Σ ;X) :=
{

f ∈ M(Ω ;X) : f (Ω) is separable
}

.

Note that Ms(Ω ;X) = M(Ω ;X) if X is separable. Choose a complete metric d on

X such that d induces the topology and such that d is uniformly bounded. (For

example, if d is any complete metric inducing the topology, one can replace d by

d/(d +1) to obtain an equivalent metric which is also bounded.) Using Lemma C.13

one sees that the mapping
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d( f ,g) : Ω ×Ω −→ [0,∞), (x,y) 7−→ d( f (x),g(y))

is product measurable. For a fixed A ∈ Σ with µ(A) < ∞ we define a semi-metric on

Ms(Ω ;X) by

dA( f ,g) :=
∫

A
d( f ,g)dµ ( f ,g ∈ Ms(Ω ;X)).

Clearly dA( f ,g) = 0 if and only if f = g almost everywhere on A. One has fn → f

with respect to dA if and only if

µ
(

[d( fn, f ) > ε ]∩A
)

→ 0 for each ε > 0.

Convergence in dΩ is called convergence globally in measure.

Let (Ω ,Σ ,µ) be a σ -finite measure space, and choose Ωn ∈ Σ of finite measure

and such that Ω =
⋃

n Ωn. Let

D( f ,g) := ∑
∞

n=1
2−ndΩn

( f ,g) ( f ,g ∈ Ms(Ω ;X)).

Then D is a semi-metric on Ms(Ω ;X). The convergence with respect to D is called

convergence (locally) in measure. Note that D = dΩ if µ is finite.

Theorem C.17. Let (Ω ,Σ ,µ) be a σ -finite measure space and X a completely

metrizable space.

a) The semi-metric D on Ms(Ω ;X) is complete.

b) D( f ,g) = 0 if and only if f = g µ-almost everywhere.

c) fn → f in measure if and only if every subsequence of ( fn)n has a subse-

quence which converges to f pointwise almost everywhere.

d) D( fn, f ) → 0 if and only if dA( fn, f ) → 0 for all A ∈ Σ , µ(A) < ∞.

Note that c) shows that a choice of an equivalent (complete bounded) metric on E

leads to an equivalent semi-metric on Ms(Ω ;E). We do not know of a good refer-

ence for Theorem C.17. In [Bauer (1990), Chap. 20] one finds all decisive details,

although formulated for the case E = R. The case of a probability space is treated

in [Kallenberg (2002), Lemmas 4.2 and 4.6].

Theorem C.18 (Egoroff). [Rana (2002), 8.2.4] Let (Ω ,Σ ,µ) be a finite measure

space and X a complete metric space. Let ( fn)n ⊂ M(Ω ;X) and f : Ω −→ X. Then

fn → f pointwise almost everywhere if and only if for each ε > 0 there is A ∈ Σ with

µ(Ac) < ε and fn → f uniformly on A.

We denote by

L0(Ω ;X) := L0(Ω ,Σ ,µ;X) := Ms(Ω ;X)/∼

the space of equivalence classes of measurable, separably-valued mappings mod-

ulo equality almost everywhere. By a) and b) of the theorem above, D induces a

complete metric on L0(Ω ;X).
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By restricting to characteristic functions, i.e., to the case X = {0,1}, this induces

a (complete!) metric on the measure algebra Σ/∼. If µ(Ω) = 1, this metric is given

by

d([A], [B]) = dΩ (1A,1B) = µ(A4B) (A,B ∈ Σ).

C.10 The Lebesgue-Bochner Spaces

Let (Ω ,Σ ,µ) be a σ -finite measure space and X be a Banach space with norm ‖·‖X .

Then L0(Ω ;X) is an F-space, i.e., a topological vector space, completely metrisable

by a translation invariant metric. A function f : Ω −→ X is called a step function

if it is of the form

f =
n

∑
j=1

1A j
⊗ x j =

n

∑
j=1

1A j
(·)x j

for some finitely many x j ∈ X , A j ∈ Σ , µ(A j) < ∞ ( j = 1, . . . ,n). We denote by

St(Ω ;X) := lin
{

1A ⊗ x : x ∈ X , A ∈ Σ , µ(A) < ∞
}

the space of all X-valued step functions. An X-valued function is called µ-

measurable if there is a sequence of step functions converging to f pointwise µ-

almost everywhere.

Lemma C.19. [Lang (1993), pp. 124 and 142] Let (Ω ,Σ ,µ) be a σ -finite measure

space, let X be a Banach space, and let f : Ω −→ X be a mapping. Then [ f ] ∈
L0(Ω ;X) if and only if f is µ-measurable, if and only if there is a sequence ( fn)n ⊂
St(Ω ;X) of step functions such that fn → f a.e. and ‖ fn(·)‖X ≤ 2‖ f (·)‖X a.e., for

all n ∈ N.

A consequence of this lemma together with Theorem C.17 is that St(Ω ;X) is

dense in the complete metric space L0(Ω ;X).

For f ∈ L0(Ω ;X) we define

‖ f‖∞ := inf
{

t > 0 : µ [‖ f (·)‖X > t ] = 0
}

and we set

L∞(Ω ;X) := L∞(Ω ,Σ ,µ;X) :=
{

f ∈ L0(Ω ;X) : ‖ f‖∞ < ∞
}

.

Then ‖·‖∞ defines a complete norm on L∞(Ω ;X). We simply write L∞(Ω) when we

deal with scalar-valued functions.

Let 1 ≤ p < ∞. For f ∈ L0(Ω ;X) we define

‖ f‖p :=

(

∫

Ω
‖ f (·)‖p

X dµ

)
1
p
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and Lp(Ω ;X) := Lp(Ω ,Σ ,µ;X) := { f ∈ L0(Ω ;X) : ‖ f‖p < ∞}. We simply write

Lp(Ω) when dealing with scalar-valued functions.

Theorem C.20. Let (Ω ,Σ ,µ) be a σ -finite measure space, X a Banach space and

1 ≤ p < ∞. Then the following assertions hold.

a) ‖·‖p is a complete norm on Lp(Ω ;X).

b) The embedding Lp(Ω ;X) ⊂ L0(Ω ;X) is continuous.

c) If fn → f in Lp(Ω ;X) then there is g ∈ Lp(Ω ;R) and a subsequence ( fnk
)k

such that
∥

∥ fnk
(·)
∥

∥

X
≤ g a.e., for all k ∈ N, and fnk

→ f pointwise a.e..

d) St(Ω ;X) is dense in Lp(Ω ;X).

e) (LDC) If ( fn)n ⊂ Lp(Ω ;X) fn → f in measure and there is g ∈ Lp(Ω ;R)
such that ‖ fn(·)‖X ≤ g a.e., for all n ∈ N, then f ∈ Lp(Ω ;X), and

‖ fn − f‖p → 0.

The abbreviation “LDC” stands for Lebesgue’s Dominated Convergence theorem.

The (Bochner-)Integral

We want to integrate functions from L1(Ω ,Σ ,µ;X). In the case X = C one can

use the already defined integral for positive measurable functions, and this is how

it is done in most of the textbooks. However, this does not work for Banach space-

valued functions. Therefore we take a different route and shall see eventually that in

the case X = C we recover the common definition.

For a step function f = ∑
n
j=1 1A j

⊗ x j we define its integral by

∫

Ω
f dµ :=

n

∑
j=1

µ(A j)x j.

This is independent of the representation of f and hence defines a linear mapping

[

f 7−→
∫

Ω
f dµ

]

: St(Ω ;X) −→ X .

Since obviously

∥

∥

∥

∫

Ω
f dµ

∥

∥

∥

X
≤
∫

Ω
‖ f (·)‖X dµ = ‖ f‖1 ( f ∈ St(Ω ;X)),

this mapping can be extended by continuity to all of L1(Ω ;X) to a linear contraction

[

f 7−→
∫

Ω
f dµ

]

: L1(Ω ;X) −→ X .

It is easy to see that for f : Ω −→ [0,∞) this definition of the integral and the one for

positive measurable functions coincide. This shows that for complex-valued func-
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tions our definition of the integral leads to the same as the one usually given in more

elementary treatments.

If Y is another Banach space and T : X −→ Y is a bounded linear mapping, then

∫

Ω
(T ◦ f )dµ = T

∫

Ω
f dµ ( f ∈ L1(Ω ;X)).

Applying linear functionals yields

∥

∥

∥

∫

Ω
f dµ

∥

∥

∥

X
≤
∫

Ω
‖ f (·)‖X dµ ( f ∈ L1(Ω ;X)).

Theorem C.21 (Averaging Theorem). [Lang (1993), Thm. 5.15] Let S ⊂ X be a

closed subset, and let f ∈ L1(Ω ;X). If

1

µ(A)

∫

A
f dµ ∈ S

for all A ∈ Σ such that 0 < µ(A) < ∞, then f ∈ S almost everywhere.

As a corollary one obtains that if
∫

A f = 0 for all A with finite measure, then f = 0

almost everywhere.

C.11 Approximations

Let (Ω ,Σ ,µ) be a measure space. Directly from Lemma C.9 we see that the set of

simple functions is dense in L∞(Ω ,Σ ,µ;R), and we know already that St(Ω ,Σ ;X)
is dense in Lp(Ω ;X) if X is a Banach space and p < ∞. Here we are interested in

more refined statements, involving step functions

St(Ω ,E;X) := lin
{

1B ⊗ x : B ∈ E, x ∈ X
}

with respect to a generator E of Σ .

Lemma C.22. [Billingsley (1979), Thm. 11.4] Let E ⊂ Σ be a ring with σ(E) =
Σ . Fix C ∈ E with µ(C) < ∞ and define

EC :=
{

B ∈ E : B ⊂C
}

=
{

B∩C : B ∈ E
}

.

Then for each A ∈ Σ and each ε > 0 there is B ∈ EC such that µ((A∩C)4B) < ε .

Based on the lemma, one can prove the following.

Theorem C.23. Let (Ω ,Σ ,µ) be a measure space and let E ⊂ Σ be a ring that

generates Σ and consists exclusively of sets of finite measure. Furthermore, suppose

that Ω is σ -finite with respect to E. Then the following assertions hold.

a) {[B] : B ∈ E} is dense in Σ/∼.
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b) If X is a Banach space then St(Ω ,E;X) is dense in L0(Ω ;X).

c) If X is a Banach space and 1 ≤ p < ∞ then St(Ω ,E;X) is dense in Lp(Ω ;X).

Fubini’s Theorem

As an application we consider two σ -finite measure spaces (Ω j,Σ j,µ j), j = 1,2,

and their product

(Ω ,Σ ,µ) = (Ω1 ×Ω2,Σ1 ⊗Σ2,µ1 ⊗µ2).

Let R := {A1 ×A2 : A j ∈ Σ j,µ(A j) < ∞ ( j = 1,2)} be the set of measurable rect-

angles. Then R is a semi-ring, and its generated ring E satisfies the conditions of

Theorem C.23. Since E consists of disjoint unions of members of R, we obtain:

Corollary C.24. Let X be a Banach space and 1 ≤ p < ∞. The space

lin
{

1A1
⊗1A2

⊗ x : x ∈ X , A j ∈ Σ j,µ(A j) < ∞ ( j = 1,2)
}

is dense in Lp(Ω ;X).

Using this and Tonelli’s theorem, one proves Fubini’s theorem.

Theorem C.25 (Fubini). [Lang (1993), Thm. 8.4] Let X be a Banach space and

f ∈ L1(Ω1×Ω2;X). Then for µ1-almost every x ∈ Ω1, f (x, ·) ∈ L1(Ω2;X) and with

F :=

(

x 7−→
∫

Ω2

f (x, ·)dµ2

)

(defined almost everywhere on Ω1) one has F ∈ L1(Ω1;X); moreover,

∫

Ω1

F dµ1 =
∫

Ω1

∫

Ω2

f (x,y)dµ2(y)dµ1(x) =
∫

Ω1⊗Ω2

f d(µ1 ⊗µ2).

C.12 Complex Measures

A complex measure on a measurable space (Ω ,Σ) is a mapping µ : Σ −→C which

is σ -additive and satisfies µ( /0) = 0. If the range of µ is contained in R, µ is called

a signed measure. For a complex measure µ one defines its total variation |µ| by

|µ|(A) := inf

{

∞

∑
n=1

|µ(An)| : (An)n ⊂ Σ pairwise disjoint, A =
⋃

n

An

}

for A ∈ Σ . Then |µ| is a positive finite measure, see [Rudin (1987), Thm. 6.2]. With

respect to the norm ‖µ‖1 := |µ|(Ω), the space of complex measures on (Ω ,Σ) is a

Banach space.



C.12 Complex Measures 1039

Let µ be a complex measure on a measurable space (Ω ,Σ), and let X be a Banach

space. For a step function f = ∑
n
j=1 1A j

⊗ x j ∈ St(Ω ,Σ , |µ| ;X) one defines

∫

Ω
f dµ =

n

∑
j=1

µ(A j)x j

as usual, and shows (using finite additivity) that this does not depend on the repre-

sentation of f . Moreover, one obtains

∥

∥

∥

∫

Ω
f dµ

∥

∥

∥

X
≤
∫

Ω
‖ f (·)‖X d|µ| = ‖ f‖L1(|µ|) ,

whence the integral has a continuous linear extension to all of L1(Ω ,Σ , |µ| ;X).

Let (Ω ,Σ ,µ) be a measure space. Then for f ∈ L1(Ω ;C) by

( f µ)(A) :=
∫

Ω
1A f dµ (A ∈ Σ)

a complex measure is defined, with | f µ| = | f |µ .

Theorem C.26 (Radon–Nikodym II). [Rudin (1987), Thm. 6.10] Let (Ω ,Σ ,µ)
be a σ -finite measure space. The mapping ( f 7−→ f µ) is an isometric isomorphism

between L1(Ω ;C) and the space of complex measures ν on Σ with the property that

|ν | is absolutely continuous with respect to µ .
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