
Appendix A

Topology

A.1 Metric spaces

A metric space is a pair (Ω ,d) consisting of a non-empty set Ω and a function

d : Ω ×Ω −→ R which describes the distance between any two points of Ω , and

for which we require the following properties:

(i) d(x,y)≥ 0, and d(x,y) = 0 if and only if x = y.

(ii) d(x,y) = d(y,x).

(iii) d(x,y)≤ d(x,z)+d(z,y) (triangle inequality).

The function d is called a metric on Ω . If instead of (i) we require only d(x,x) = 0

for all x ∈ Ω , we obtain the notion of a semi-metric. For A ⊂ Ω and x ∈ Ω we

define

d(x,A) := inf{d(x,y) : y ∈ A}

called the distance of x from A. The triangle inequality implies that

d(x,A)−d(y,A)≤ d(x,y) (x,y ∈Ω).

By a ball with center x and radius r > 0 we mean either of the sets

B(x,r) := {y ∈Ω : d(x,y) < r},

B(x,r) := {y ∈Ω : d(x,y)≤ r}.

A set O ⊆ X is called open if for all x ∈ O there is a ball B ⊆ O with centre x and

radius r > 0. A set A⊆Ω is called closed if Ω \A is open. The ball B(x,r) is open,

and the ball B(x,r) is closed for any x ∈Ω and r > 0. Two trivially open, and at the

same time closed sets are the empty set /0 and the set Ω itself.

A sequence (xn) in Ω is convergent to the limit x ∈ Ω (we write: xn → x), if

for all ε > 0 there is n0 ∈ N with d(xn,x) < ε for n ≥ n0. For a subset A ⊂ Ω the

following assertions are equivalent:
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(i) A is closed;

(ii) if x ∈Ω and d(x,A) = 0 then x ∈ A;

(iii) if (xn)n ⊂ A and xn → x ∈Ω , then x ∈ A.

A Cauchy-sequence (xn) in Ω is a sequence with the property that for all ε > 0

there is n0 ∈ N with d(xn,xm) < ε for n,m ≥ n0. A convergent sequence is always

a Cauchy-sequence. A metric space is called complete if the converse implication

also holds.

A.2 Topological spaces

Starting with a non-empty set Ω we would like to define open sets. For this purpose

observe that open sets in Euclidean spaces or as defined in A.1 satisfy the following:

a) /0 and Ω are open.

b) If O1 and O2 are open, so is their intersection O1∩O2.

c) An arbitrary union of open sets is open.

We now take these three properties as the defining characteristics for the family of

open sets in Ω . More precisely, assume that O ⊆P(Ω) satisfies

(i) /0,Ω ∈O;

(ii) If O1, . . . ,On ∈O , then O1∩·· ·∩On ∈O; (i.e., O is ∩-stable,

(iii) If Oι ∈O , ι ∈ I, then
⋃

ι∈I Oι ∈O .

We call O the family of open sets in Ω , and we say that (Ω ,O) (or simply Ω ) is a

topological space. We also call O itself the topology on Ω . Closed sets are then the

complements of open sets. Finite unions and arbitrary intersections of closed sets

are closed.

A topological space is called metrisable if there exists a metric that induces the

topology. Not every topological space is metrisable, cf. Section A.9 below.

If O,O ′ are both topologies on Ω and O
′ ⊆ O , then we say that the topology O

is finer than O
′ (or O

′ is coarser than O).

Example A.1. a) Let Ω be non-empty, and O := { /0,Ω}. Then O satisfies the

properties (i)–(iii), thus (Ω ,O) is a topological space, whose topology is

called the trivial topology. Note that it is the coarsest among all topologies

on Ω .

b) The other extreme case is when we set O := P(Ω), the largest possible

choice. The so defined topology is the discrete topology. The explanation for

this terminology is that for all points in x ∈Ω the singleton {x} is open (and

also closed). The discrete topology is the finest among all possible topologies

on Ω . In this case all sets are closed and open at the same time.
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c) If (Ω ,d) is a metric space, the open sets from A.1 define a topology Od on

Ω , and we say that the metric induces the topology on Ω . In this case there

are many different metrics that induce the same topology, and these metrics

we call equivalent metrics.

d) For Ω is a non-empty set, the function d : Ω×Ω −→R defined by d(x,y) = 0

for x = y, d(x,y) = 1 for x 6= y is a metric and it induces the discrete topology.

A neighbourhood of a point x ∈ Ω is a set U such that there is an open set

O ⊆ Ω with x ∈ O ⊆U . An open set is a neighbourhood of all of its points. If A is

a neighbourhood of x, then x is called an interior point of A. The set of all interior

points of A is denoted by Å and is called the interior of A. The closure A of a subset

A⊆Ω is
⋂

A⊆F⊆Ω
F closed

F,

which is obviously the smallest closed set that contains A. If (Ω ,d) is a metric space

and A⊂Ω , then A = {x : d(x,A) = 0}, and x ∈ A iff x is the limit of a sequence in

A.

To define a topology it is not necessary to specify all the open sets. We may as

well proceed similarly to the metric case, by replacing the family of open balls

{B(x,r) : x ∈Ω , r > 0}

by a suitable system of neighbourhoods. A base B ⊆ O for the topology O on Ω ,

is a system which has the property that all open sets can be written as the union

of base-elements. For example, the family of open balls is a base for the topology

induced by the metric on the metric space (Ω ,d). A topological space is called

second countable if it has a countable base for its topology.

A topological space Ω is called Hausdorff if any two points x,y ∈ Ω can be

separated by disjoint open neighbourhoods, i.e., there are U,V ∈ O with U ∩V = /0

and x ∈U , y ∈ V . In a Hausdorff space a singleton {x} x ∈ Ω is closed. Discrete

spaces are Hausdorff, while trivial topological spaces are not unless Ω is a singleton.

More generally metric spaces are Hausdorff. If O , O
′ are two topologies on Ω , O

finer than O
′ and O

′ Hausdorff, then also O is Hausdorff. In these lectures we will

always consider Hausdorff spaces, even if this is not stated explicitly.

If Ω ′ is a non-empty subset of Ω , then the subspace topology on Ω ′ is given

by OΩ ′ := {Ω ′ ∩O : O ∈ O}. A subspace of a Hausdorff space is Hausdorff. An

isolated point of Ω ′ is a point y∈Ω ′ for which {y} is open in the subspace topology

of Ω ′. The non-isolated points of Ω ′ are called accumulation points. A point x∈Ω
is the cluster point of the sequence (xn)n∈N in Ω if any neighbourhood of x contains

infinitely many members of the sequence.

A subset A of a topological space Ω is called dense in Ω if A = Ω . A topological

space Ω is called separable if there is a countable set A ⊂ Ω which is dense in

Ω . A subspace of a separable metric space is separable, but a similar statement for

general topological spaces is false.
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A.3 Continuity

Given (Ω ,O), (Ω ′,O ′) two topological spaces, a function f : Ω −→ Ω ′ is called

continuous if the inverse image f−1(O) of each open set O ∈ O
′ is open in Ω ; we

sometimes say that f : (Ω ,O) −→ (Ω ′,O ′) is continuous. Replacing open sets by

closed sets yields the same notion. The function f is continuous at x ∈ Ω if for

all (open) neighbourhood V of f (x) in Ω ′, there is U an (open) neighbourhood of x

with f (U)⊆V .

For metric spaces Ω , Ω ′ continuity is the same as sequential continuity, i.e., the

property that for xn ∈Ω , xn convergent to x, one has the convergence f (xn)→ f (x).

If Ω is endowed with the discrete topology then all functions f : Ω −→ Ω ′ are

continuous. The same is true if Ω ′ has the trivial topology.

A bijective continuous transformation whose inverse is also continuous is called

a homeomorphism. The Hausdorff property is homeomorphism-invariant, whereas

completeness of metric spaces is not.

A mapping f : (Ω ,d) −→ (Ω ′,d′) between two metric spaces is called uni-

formly continuous if for each ε > 0 there is δ > 0 such that d(x,y) < δ implies

d( f (x), f (y)) < ε for all x,y ∈Ω . If A⊂Ω then the distance function x 7−→ d(x,A)
from Ω to R is uniformly continuous.

A.4 Inductive and projective topologies

Let Ωι , ι ∈ I be topological spaces and fι : Ωι −→ Ω for some non-empty set Ω .

Define

Oind := {A⊆Ω : f−1
ι (A) for all ι ∈ I}.

Then (Ω ,Oind) is a topological space. The topology Oind is called the inductive

topology on Ω with respect to ( fι)ι∈I , and it is the finest topology such that all the

mappings fι become continuous. A function g : Ω −→ Z, (Ω ′,O ′) a topological

space is continuous, if and only if all the functions g ◦ fι : Ωι −→ Ω ′, ι ∈ I are

continuous.

The projective topology is defined on the other way round: Suppose that Ωι are

topological spaces with fι : Ω −→Ωι mappings for some set Ω , ι ∈ I. The projec-

tive topology Oproj with resect to ( fι)ι∈I is the coarsest for which the functions fι

become continuous. For the existence of this coarsest topology consider the family

Bproj := { f−1
ι (Oι) : Oι ∈O for all ι ∈ I} ⊆P(Ω).

One can show that Bproj is a base for a topology which has the required properties.

A function g : Ω ′ −→Ω , (Ω ′,O ′) a topological space is continuous, if and only

if all the functions fι ◦g : Ω ′ −→Ωι , ι ∈ I are continuous.
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An example is the subspace topology: If Ω ′ ⊆ Ω , (Ω ,O) a topological space,

then the subspace topology on Ω ′ is exactly the projective topology with respect to

the natural imbedding J : Ω ′ −→Ω .

Ω Ω ′ Ω ′ Ω

Ωι Ωι

-g -g

?
fι

6
fι

p

p

p

p

p

p

p

�
g◦ fl

p

p

p

p

p

p

p

I
fι◦g

Fig. A.1 Continuity for the inductive respectively for the projective topol-

ogy

A.5 Product spaces

Let (Ωι)ι∈I a non-empty family of non-empty topological spaces. The product

topology on

Ω := ∏
ι∈I

Ωι =
{

x : I −→
⋃

Ωι : x(ι) ∈Ωι

}

is the projective topology with respect to the canonical projections πι : Ω −→ Ωι .

Instead of x(ι) we usually write xι . A base for this topology is formed by the open

rectangles

Aι1,...,ιn := {x = (xι)ι∈I : xιi
∈ Oιi

for i = 1, . . . ,n}

for ι1, . . . , ιn ∈ I, n∈N and Oιi
open in Ωιi

. For the product of two (or finitely many)

spaces we also use the notation Ω ×Ω ′ and the like. A space is Hausdorff if and

only if the diagonal {(x,x) : x ∈Ω} is closed in the product space Ω ×Ω .

If I is countable and Ωn, n ∈ I are all metrisable spaces then so is their product

∏n∈I Ωn. The convergence in this product space is just the coordinatewise conver-

gence. If Ωι = Ω for all ι ∈ I, then we use the notation Ω I for the product space.

A.6 Quotient spaces

Let (Ω ,O) be a topological space and∼ an equivalence relation on Ω , with quotient

mapping

q : Ω −→Ω/∼,

sending each x ∈ Ω to its equivalence class. The inductive topology on Ω/∼ with

respect to q is called the quotient topology. A set A ⊆ Ω/∼ is open in Ω/∼ if and

only if
⋃

A, the union of the elements in A is open in Ω .
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For example consider Ω = [0,1] and the equivalence relation ∼ whose equiva-

lence classes are {0,1}, {x}, x ∈ (0,1). Then the quotient [0,1]/∼ is homeomorphic

to the unit circle T, under the mapping (x 7−→ e2πi·x) : [0,1]/∼−→ T. This example

is just the same as factorising R by Z: take Ω = R and define x ∼ y if x− y ∈ Z.

Then we have R/Z = R/∼ homeomorphic to T.

A.7 Spaces of Continuous Functions

For Ω a topological space the set C(Ω) or Cb(Ω) of all continuous functions respec-

tively bounded, continuous functions f : Ω −→K with pointwise multiplication and

addition is an algebra over K (K stands for R or C).

A sequence of bounded functions on Ω is uniformly convergent to f : Ω −→K

if

sup
x∈Ω

| fn(x)− f (x)| → 0, for n→ ∞.

If each fn is continuous and the sequence ( fn)n converges to f uniformly, the func-

tion f is continuous. The function ( f 7−→ ‖ f‖∞) : Cb(Ω)−→R is a norm and turns

Cb(Ω) into a Banach space, even a Banach algebra. If (Ω ,d) is a metric space, then

the space BUC(Ω ,d) of bounded uniformly continuous functions on Ω is a closed

subspace of Cb(Ω).

For general topological spaces the space C(Ω) may be quite “small”. For ex-

ample, if Ω carries the trivial topology, the only continuous functions thereon are

the constant ones. In “good” topological spaces the continuous functions separate

the points, i.e., for every x,y ∈ Ω such that x 6= y there is f ∈ C(Ω) such that

f (x) 6= f (y). (Such spaces are necessarily Hausdorff.) Even better it is, when the

continuous functions separate closed sets. This means that for every pair of dis-

joint closed subsets A,B⊂Ω there is a function f ∈ Cb(Ω) such that

0≤ f ≤ 1, f (A)⊂ {0}, f (B)⊂ {1}.

Metric spaces do have this property: Let (Ω ,d) be a metric space. For each A⊂ Ω
the function x 7−→ d(x,A) is continuous; moreover, it is equal to zero precisely on

A. Hence if A,B are disjoint closed subsets of Ω then the function

f (x) :=
d(x,B)

d(x,A)+d(x,B)
(x ∈Ω)

separates A from B. (Note that f is even uniformly continuous.)
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A.8 Compactness

A topological space (Ω ,O), O the family of open sets in Ω , is called compact if it

is Hausdorff and every open cover of Ω has a finite subcover. This latter condition

is equivalent to the finite intersection property: every family of closed subsets of

Ω , every finite subfamily of which has non-empty intersection, has itself non-empty

intersection. A subset Ω ′ ⊆Ω is compact if Ω ′ with the subspace topology is com-

pact. A compact set in a Hausdorff space is closed, and a closed subset in a compact

space is compact. A relatively compact set is set whose closure is compact.

By the Heine-Borel theorem, a subset of R
d is compact iff it is closed and

bounded.

The continuous image of a compact space is compact, if it is Hausdorff. More-

over, if Ω is compact and Ω ′ is Hausdorff, a mapping ϕ : Ω −→ Ω ′ is already

a homeomorphism if it is continuous and bijective. In particular, if Ω is compact

for some topology O and if O
′ is another topology on Ω , coarser than O but still

Hausdorff, then O = O
′.

Theorem A.2 (Tychonov). Suppose (Ωι)ι∈I is a family of non-empty topological

spaces. Then the product space Ω = ∏ι∈I Ωι is compact if and only if each Ωι ,

ι ∈ I is compact.

A metric space Ω is compact if and only if it is sequentially compact, that is,

each sequence (xn) ⊆ Ω has a convergent subsequence. A compact metric space is

complete, separable and has a countable base, and every continuous function on it

is bounded and uniformly continuous.

A Hausdorff topological space (Ω ,O) is called locally compact if each of its

points has a compact neighbourhood. It follows then that the topology has a base

consisting of relatively compact, open sets. A compact space is (trivially) locally

compact. The support of a function f : Ω −→ C is the set

supp f := {x ∈Ω : f (x) 6= 0}.

The set of all continuous functions with compact support is a vector space, denoted

by Cc(Ω). On locally compact spaces, continuous functions separate closed from

compact subsets:

Lemma A.3 (Urysohn’s lemma). Let (Ω ,O) be a locally compact space, and let

A,B disjoint closed subsets of Ω , with B compact. Then there exists a continuous

function f : Ω −→ [0,1] such that f has compact support, f (A)⊆ {0}, and f (B)⊆
{1}.

Let Ω = K be compact. Then C(K) = Cc(K) = Cb(K) is a Banach algebra with

respect to the uniform norm. Urysohn’s Lemma shows that C(K) separates closed

sets.
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A.9 Metrisability

There are various sufficient conditions for the existence of a metric on a topological

space that induces the given topology. The most convenient for us is the following:

Suppose that (K,O) is a compact space and there is a countable family of functions

fn, n ∈ N that separates the points of K. Then the function

d(x,y) :=
∞

∑
n=1

1

2n

| fn(x)− fn(y)|

1+ | fn(x)− fn(y)|

is continuous on K×K and it is a metric. Thus the topology Od induced by d is

coarser than the original one. This means that Id : (K,O)−→ (K,Od) is a continuous

mapping, but then because of the compactness of K it is also a homeomorphism,

hence Od = O .

More generally, a compact space is metrisable if and only if it has a countable

base if and only if C(K) is separable.

A.10 Category

A subset A of a topological space Ω is called nowhere dense if its closure A has

empty interior: (A)◦ = /0. A is called of first category in Ω if it is the union of

countably many nowhere dense subsets of Ω . A is called of second category in Ω
if it is not of first category. Countable unions of sets of first category are of first

category.

One should have the picture in mind that sets of first category are small, whereas

sets of second category are large. Typically one expects that “fat” sets, for example

non-empty open sets are somehow large. This requirement is the defining character-

istic of Baire spaces: (Ω ,O) is called a Baire space if every non-empty open subset

of Ω is of second category in Ω .

Theorem A.4. Each locally compact space and each complete metric space is a

Baire space.

A countable intersection of open sets in a topological space is called a Gδ set; anal-

ogously, Fσ sets are those that can be written as countable union of closed sets. The

following is an easy consequence of the definitions:

Theorem A.5. Let Ω be a Baire-space.

a) An Fσ set is of first category if and only if it has empty interior.

b) A Gδ set is of first category if and only if it is nowhere dense.

c) A countable intersection of dense Gδ sets is dense.

Note that in a metric space every closed subset A is Gδ since A =
⋂

n∈N{x : d(x,A) <
1/n}.
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A.11 Polish spaces

A topological space Ω is called a Polish space if it is separable and its topology

comes from some complete metric. A locally compact space is Polish if and only if

it has a countable base for its topology. A compact space is Polish if and only if it is

metrisable.


