Fachbereich Mathematik JProf. Dr. Christian Meyer Lucia Panizzi

5. Übungsblatt zur "Nichtlinearen Optimierung"

Hausübung

Aufgabe H1 (Vereinfachtes Newton-Verfahren - Teil I)

Beim vereinfachten Newtonverfahren verwendet man in jedem Schritt die Jacobi-Matrix des Startwerts, wodurch sich folgende Iterationsvorschrift ergibt:

$$x_{k+1} = x_k - F'(x_0)^{-1}F(x_k), \quad k = 0, 1, \dots$$

Beweisen die folgende Behauptung:

Die Abbildung $F: \mathbb{R}^n \to \mathbb{R}$ sei stetig differenzierbar und besitze eine Nullstelle in $\bar{x} \in \mathbb{R}^n$. Ferner sei $F'(\bar{x})$ nichtsingulär.

Dann gibt es ein $\delta>0$, so dass das vereinfachten Newtonverfahren für jeden Startwert $x_0\in B_\delta(\bar x)$ eine Folge $\{x_k\}$ definiert, die linear gegen $\bar x$ konvergiert.

(Hinweis: Benutzen Sie Lemma 2.7.2 und gehen Sie analog zum Beweis von Satz 2.7.3 im Skript vor.)

Aufgabe H2 (Vereinfachtes Newton-Verfahren - Teil II)

Gegeben sei die Funktion $F(x)=x^2+x,\,F:\mathbb{R}\to\mathbb{R}.$ Wir betrachten das vereinfachte Newton-Verfahren

$$x_{k+1} = x_k - F'(x_0)^{-1}F(x_k)$$

zur Bestimmung einer Nullstelle für den Startwert $x_0 = 1$. Zeigen Sie, dass die durch das Verfahren erzeugte Folge (x_k) linear gegen die Nullstelle $\bar{x} = 0$ konvergiert.

Abgabe der Hausaufgaben: Am 2 bzw. 5.12.2009 in der Übung.