Fachbereich Mathematik Prof. Dr. R. Farwig Dr. B. Debrabant F. Riechwald R. Schulz

10.12.2008

Analysis 1 für M, LaG M, Tutorium 9

T 27 Rand, Inneres und Abschluss einer Menge

Sei $A \subset \mathbb{R}$. Ein Punkt $a \in \mathbb{R}$ heißt Randpunkt von A, wenn in jeder Umgebung von a sowohl ein Punkt von A als auch ein Punkt von $\mathbb{R} \setminus A$ liegen. Die Menge aller Randpunkte von A bezeichnen wir mit ∂A . Man zeige:

- a) Die Menge $A \setminus \partial A$ ist offen.
- b) Die Menge $A \cup \partial A$ ist abgeschlossen.

Weiterhin bezeichnet man $\mathring{A} := A \setminus \partial A$ als das Innere und $\overline{A} := A \cup \partial A$ als den Abschluss der Menge A.

- c) Konstruiere eine offene Menge U, so dass $\overset{\circ}{\overline{U}} \neq U$ gilt.
- d) Zeige, dass

$$\mathring{A} = \bigcup_{O \subset A, O \ offen} O$$

und

$$\overline{A} = \bigcap_{F \supset A, F \ abgeschlossen} F$$

gelten.

e) Zeige, dass \mathring{A} gleich der Menge aller inneren Punkte von A ist und dass \overline{A} gleich der Vereinigung von A mit der Menge der Häufungspunkte von A ist.

T 28 Struktur offener Teilmengen von $\mathbb R$

Sei M eine offene Teilmenge von \mathbb{R} . Wir wollen zeigen, dass M eine abzählbare disjunkte Vereinigung von offenen Intervallen ist. (Eine disjunkte Vereinigung $\bigcup_{i \in I} X_i$ ist eine Vereinigung bei der je zwei Mengen X_i und X_k mit $i, k \in I$ leeren Schnitt haben.)

Dazu gehen wir in folgenden Schritten vor:

- 1. Sei $x \in M$. Mit I_x bezeichnen wir die Vereinigung aller offenen Intervalle, die x enthalten, und die in M enthalten sind. Zeige, dass I_x ein offenes Intervall ist
- 2. Seien $x, y \in M$. Zeige, daß aus $y \in I_x$ schon $I_x = I_y$ folgt.
- 3. Zeige nun die Behauptung.