Fachbereich Mathematik

Prof. Dr. Ulrich Kohlenbach PD Dr. Achim Blumensath Dr. Eyvind Briseid

Wintersemester 2009/2010

Analysis I Übung 9

Aufgabe 1

Für $n \in \mathbb{N}$ sei $f_n : \mathbb{R} \to \mathbb{R}$ die Funktion mit

$$f_n(x) \coloneqq |x+1|^n.$$

- (a) Zeigen Sie, daß f_n für jedes n stetig ist.
- (b) Für welche *x* ist die Funktion

$$g(x) \coloneqq \lim_{n \to \infty} f_n(x)$$

definiert? In welchen *x* ist sie stetig?

Lösung. (a) Die Funktionen

$$h(x) := x + 1$$
, $h'(x) := |x|$, und $h''_n(x) := x^n$

sind alle stetig. Da $f_n = h_n'' \circ h' \circ h$ folgt mit §10 Satz 2, daß auch f_n stetig ist.

(b) g(x) ist definiert für $x \in [-2, 0]$ und es gilt

$$g(x) := \begin{cases} 0 & \text{für } -2 < x < 0, \\ 1 & \text{für } x = -2 \text{ oder } x = 0. \end{cases}$$

Die Funktion g ist in jedem Punkt $x \in (-2,0)$ stetig, da es zu solchen x eine Umgebung $(x - \delta, x + \delta)$ gibt, auf der g konstant ist.

g ist nicht im Punkt 0 stetig, da für die Folge $x_n := -\frac{1}{n}$ gilt

$$\lim_{n\to\infty} x_n = 0 \quad \text{und} \quad \lim_{n\to\infty} g(x_n) = \lim_{n\to\infty} 0 = 0 \neq g(0).$$

Analog folgt, daß g nicht in x = -2 stetig ist.

Aufgabe 2

Sei $f: D \to \mathbb{R}$ eine Funktion und $a \in D$. Zeigen Sie, daß f genau dann stetig im Punkt a ist, wenn gilt

$$\lim_{x \nearrow a} f(x) = f(a) = \lim_{x \searrow a} f(x).$$

Lösung. Offensichtlich folgt aus $\lim_{x\to a} f(x) = f(a)$, daß

$$\lim_{x \to a} f(x) = f(a) \quad \text{und} \quad \lim_{x \to a} f(x) = f(a).$$

Nehmen wir also umgekehrt an, daß

$$\lim_{x \nearrow a} f(x) = f(a) = \lim_{x \searrow a} f(x).$$

Wir müssen zeigen, daß dann auch $\lim_{x\to a} f(x) = f(a)$ gilt.

Sei $(x_n)_{n\in\mathbb{N}}$ eine Folge, die gegen a konvergiert. Wenn es einen Index $N\in\mathbb{N}$ gibt, mit $x_n\leq a$ für alle $n\geq N$, so ist

$$\lim_{n\to\infty} f(x_n) = \lim_{n\to\infty} f(x_{N+n}) = \lim_{x \to a} f(x) = f(a).$$

Für den Fall, daß es ein $N \in \mathbb{N}$ mit $x_n \ge a$ für alle $n \ge N$ gibt, argumentieren wir analog.

Es bleibt also der Fall, das es unendlich viele n mit $x_n \le a$ und unendlich viele n mit $x_n \ge a$ gibt. Sei $(x_{k_n})_{n \in \mathbb{N}}$ die Teilfolge aller Glieder mit $x_{k_n} \le a$ und sei $(x_{m_n})_{n \in \mathbb{N}}$ die Teilfolge aller Glieder mit $x_{m_n} \ge a$. Um zu zeigen, daß $f(x_n)$ gegen f(a) konvergiert, betrachten wir ein $\varepsilon > 0$. Nach Annahme gilt

$$\lim_{n\to\infty} f(x_{k_n}) = f(a) = \lim_{n\to\infty} f(x_{m_n}).$$

Also gibt es $N, N' \in \mathbb{N}$, mit

$$|f(x_{k_n}) - f(a)| < \varepsilon \quad \text{für } n \ge N,$$

und
$$|f(x_{m_n}) - f(a)| < \varepsilon \quad \text{für } n \ge N'.$$

Für $M := \max\{k_N, m_{N'}\}$ folgt hieraus wie gewünscht

$$|f(x_n) - f(a)| < \varepsilon \quad \text{für } n \ge M.$$

Hausaufgaben

Aufgabe 3

In welchen Punkten sind die folgenden Funktionen $f : \mathbb{R} \to \mathbb{R}$ und $g : \mathbb{R} \to \mathbb{R}$ stetig?

$$f(x) := \begin{cases} 0 & \text{für } x \le 0, \\ x^2 & \text{für } x > 0. \end{cases}$$

$$g(x) := \begin{cases} 0 & \text{für } x \le 0, \\ \frac{1}{n} & \text{für } \frac{1}{n} \le x < \frac{1}{n-1}, n \in \mathbb{N}, n > 1, \\ 1 & \text{für } x \ge 1 \end{cases}$$

Lösung. f ist in jedem Punkt stetig.

Für x < 0 gibt es ein $\delta > 0$, so daß $f \mid (x - \delta, x + \delta)$ konstant ist. Da konstante Funktionen stetig sind, ist f in x stetig. Analog gibt es für x > 0 ein $\delta > 0$, so daß $f \mid (x - \delta, x + \delta)$ durch ein Polynom beschrieben wird. Da Polynome stetig sind, ist f in einem solchen x stetig.

Für x=0 prüfen wir die Definition. Sei $(x_n)_{n\in\mathbb{N}}$ eine Folge, die gegen 0 konvergiert. Wir müssen zeigen, daß $(f(x_n))_{n\in\mathbb{N}}$ gegen f(0)=0 konvergiert. Sei also $\varepsilon>0$. Da $(x_n)_{n\in\mathbb{N}}$ gegen 0 konvergiert, gibt es ein $N\in\mathbb{N}$, so daß für $n\geq N$ $|x_n|<\sqrt{\varepsilon}$ gilt. Hieraus folgt $|f(x_n)|<\varepsilon$ für solche n.

Für die Funktion g bemerken wir zunächst, daß g nicht stetig ist in Punkten der Form $x = \frac{1}{n}$ mit $n \in \mathbb{N}$, n > 0. Dies folgt daraus, daß

$$\lim_{x \to \frac{1}{n}} g(x) = \frac{1}{n+1} \neq \frac{1}{n} = \lim_{x \to \frac{1}{n}} g(x).$$

In allen anderen Punkten ist g stetig. Für $x \neq 0$ folgt dies daraus, daß es ein $\delta > 0$ gibt, so daß g im Intervall $(x - \delta, x + \delta)$ konstant ist.

Für x=0 prüfen wir die Definition. Sei $(x_n)_{n\in\mathbb{N}}$ eine Folge, die gegen 0 konvergiert. Wir müssen zeigen, daß $(g(x_n))_{n\in\mathbb{N}}$ gegen g(0)=0 konvergiert. Sei also $\varepsilon>0$. Da $(x_n)_{n\in\mathbb{N}}$ gegen 0 konvergiert, gibt es ein $N\in\mathbb{N}$, so daß für $n\geq N$ $|x_n|<\varepsilon$ gilt. Wegen $0\leq g(x)\leq x$ für $x\in[0,1]$ folgt hieraus, daß $|g(x_n)|<\varepsilon$ für solche n.

Aufgabe 4

Seien $f_1: D_1 \to \mathbb{R}$ und $f_2: D_2 \to \mathbb{R}$ zwei stetige Funktionen, welche auf abgeschlossenen Intervallen $D_k = [a_k, b_k]$ definiert sind. Angenommen, es gilt

$$f_1(x) = f_2(x)$$
 für alle $x \in D_1 \cap D_2$.

Dann können wir eine Funktion $g: D_1 \cup D_2 \to \mathbb{R}$ definieren durch

$$g(x) := \begin{cases} f_1(x) & \text{für } x \in D_1, \\ f_2(x) & \text{für } x \in D_2. \end{cases}$$

Zeigen Sie, daß g stetig ist.

Lösung. Sei $a \in D_1 \cup D_2$ und sei $(x_n)_{n \in \mathbb{N}}$ eine Folge in $D_1 \cup D_2$, die gegen a konvergiert. Wir müssen zeigen, daß $(g(x_n))_{n \in \mathbb{N}}$ gegen g(a) konvergiert. Gibt es ein $i \in \{1, 2\}$ und ein $N \in \mathbb{N}$, so daß $x_n \in D_i$ für alle $n \geq N$, so ist auch $a \in D_i$ und wir erhalten

$$\lim_{n\to\infty}g(x_n)=\lim_{n\to\infty}g(x_{N+n})=\lim_{n\to\infty}f_i(x_{N+n})=f_i(a)=g(a).$$

Angenommen, es gibt solche Indizes nicht. Sei $(x_{k_n})_{n\in\mathbb{N}}$ die Teilfolge aller Glieder mit $x_{k_n}\in D_1$ und sie $(x_{m_n})_{n\in\mathbb{N}}$ die Teilfolge aller Glieder mit $x_{m_n}\in D_2$. Da beide Teilfolgen gegen a konvergieren und D_1 und D_2 abgeschlossen sind, folgt $a\in D_1$ und $a\in D_2$.

Sei $\varepsilon > 0$. Da f_1 und f_2 stetig sind, gibt es Indizes $N_1, N_2 \in \mathbb{N}$, so daß

$$|f_1(x_{k_n}) - f_1(a)| < \varepsilon \quad \text{für } n \ge N_1,$$

und $|f_2(x_{m_n}) - f_2(a)| < \varepsilon \quad \text{für } n \ge N_2.$

Da
$$f_1(a) = g(a) = f_2(a)$$
 folgt für $N := \max\{k_{N_1}, m_{N_2}\}$ wie gewünscht, daß

$$|g(x_n) - g(a)| < \varepsilon$$
 für $n \ge N$.