Fachbereich Mathematik

Prof. Dr. Ulrich Kohlenbach PD Dr. Achim Blumensath MSc Eyvind Briseid

Wintersemester 2009/2010

Analysis I Übung 5

Aufgabe 1

Zeigen Sie, daß eine Folge $(a_n)_{n\in\mathbb{N}}$ genau dann konvergiert, wenn sie beschränkt ist und genau einen Häufungspunkt besitzt.

Lösung. (\Rightarrow) Angenommen, $(a_n)_{n\in\mathbb{N}}$ konvergiert gegen a. Dann gibt es ein $N\in\mathbb{N}$ mit $|a_n-a|<1$ für alle $n\geq N$. Sei b das Minimum von a_0,\ldots,a_N und a-1, und sei c das Maximum von a_0,\ldots,a_N und a+1. Dann gilt

 $b \le a_n \le c$ für alle $n \in \mathbb{N}$.

Also ist $(a_n)_{n\in\mathbb{N}}$ beschränkt.

Wir zeigen, daß a der einzige Häufungspunkt von $(a_n)_{n\in\mathbb{N}}$ ist. Offensichtlich ist a ein Häufungspunkt, da $(a_n)_{n\in\mathbb{N}}$ eine Teilfolge von sich selber ist und gegen a konvergiert. Sei umgekehrt $(a_{n_k})_{k\in\mathbb{N}}$ eine beliebige Teilfolge. Dann konvergiert auch $(a_{n_k})_{k\in\mathbb{N}}$ gegen a. Also kann es keinen anderen Häufungspunkt geben.

(⇐) Sei $(a_n)_{n\in\mathbb{N}}$ beschränkt und sei a der einzige Häufungspunkt. Wir zeigen, daß $(a_n)_{n\in\mathbb{N}}$ gegen a konvergiert. Angenommen, dies ist nicht der Fall. Dann gibt es ein $\varepsilon > 0$, so daß für beliebig große Indizes n gilt $|a_n - a| \ge \varepsilon$. Sei $(a_{n_k})_{k\in\mathbb{N}}$ die Teilfolge aller Elemente mit $|a_{n_k} - a| \ge \varepsilon$. Nach dem Satz von Bolzano-Weierstraß hat diese Teilfolge einen Häufungspunkt. Nach Annahme ist dieser Häufungspunkt gleich a. Dies kann aber nicht sein, da für alle k $|a_{n_k} - a| \ge \varepsilon$ gilt. Ein Widerspruch.

Aufgabe 2

Zeigen Sie, daß jede Folge $(a_n)_{n\in\mathbb{N}}$ eine Teilfolge besitzt, die monoton wachsend oder monoton fallend ist.

Lösung. Angenommen $(a_n)_{n\in\mathbb{N}}$ besitzt keine monoton fallende Teilfolge. Wir müssen zeigen, daß es eine monoton wachsende Teilfolge gibt.

Zunächst beweisen wir, daß es zu jedem Index $k \in \mathbb{N}$ ein Index $N \ge k$ gibt, so daß für alle n > N $a_n > a_N$ gilt. Angenommen, dies ist nicht der Fall. Dann gibt es ein $k \in \mathbb{N}$, so daß es zu jedem $N \ge k$ einen Index n > N gibt mit $a_n \le a_N$. Wir definieren eine Teilfolge $(a_{n_i})_{i \in \mathbb{N}}$ wie folgt. Wir beginnen mit $n_0 := k + 1$. Sind n_0, \ldots, n_i schon definiert, so wählen wir $n_{i+1} > n_i$ so, daß $a_{n_{i+1}} \le a_{n_i}$ gilt. Dann ist $(a_{n_i})_{i \in \mathbb{N}}$ monoton fallend. Ein Widerspruch.

Damit ist obige Behauptung bewiesen. Wir benutzen sie um die gewünschte monoton wachsende Teilfolge $(a_{n_i})_{i\in\mathbb{N}}$ zu konstruieren. Zunächst benutzen wir die Behauptung, um ein $N\geq 0$ zu finden, so daß $a_n>a_N$ für alle n>N gilt. Wir nehmen dieses N als n_0 . Sind n_0,\ldots,n_i schon definiert, so gibt es nach der Behauptung einen Index $N\geq n_i+1$ mit $a_n>a_N$ für n>N. Wir setzen $n_{i+1}:=N$. Nach Konstruktion gilt $a_{n_{i+1}}>a_{n_i}$. Also ist die Teilfolge streng monoton wachsend.

Hausaufgaben

Aufgabe 3

Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge. Zeigen Sie, daß $a\in\mathbb{R}$ genau dann ein Häufungspunkt von $(a_n)_{n\in\mathbb{N}}$ ist, wenn gilt

$$\forall \varepsilon > 0 \; \forall n \; \exists m > n \left[\left| a_m - a \right| < \varepsilon \right].$$

Lösung. (⇒) Angenommen, a ist ein Häufungspunkt. Dann gibt es eine Teilfolge $(a_{n_k})_{k \in \mathbb{N}}$, die gegen a konvergiert. Um obige Bedingung zu zeigen, betrachten wir $\varepsilon > 0$ und $n \in \mathbb{N}$. Es gibt eine Zahl N, mit

 $|a_{n_k} - a| < \varepsilon$, für alle $k \ge N$. Wählen wir $k \ge N$ groß genug, so daß gilt $n_k > n$, so können wir $m := n_k$ setzen.

(\Leftarrow) Angenommen, obige Bedingung ist erfüllt. Wir konstruieren eine Teilfolge $(a_{n_k})_{k\in\mathbb{N}}$, welche gegen a konvergiert. Wir starten mit $n_0 := 0$. Wenn wir n_0, \ldots, n_k bereits definiert haben, so wählen wir n_{k+1} wie folgt. Nach Annahme gibt es ein $m > n_k$ mit $|a_m - a| < 1/(k+1)$. Wir setzen $n_{k+1} := m$.

Wir müssen noch zeigen, daß die so konstruierte Teilfolge $(a_{n_k})_{k\in\mathbb{N}}$ gegen a konvergiert. Sei dazu $\varepsilon > 0$. Wir wählen $k \in \mathbb{N}$, so daß $\varepsilon > 1/(k+1)$. Dann ist $|a_{n_i} - a| < 1/(k+1) < \varepsilon$, für alle i > k.

Aufgabe 4

Zeigen Sie die Ungleichung

$$\sqrt{ab} \le \frac{1}{2}(a+b)$$
, für $a, b \ge 0$,

wobei Gleichheit nur für a=b gilt. (*Hinweis*. Betrachten Sie $x:=\frac{a}{\sqrt{ab}}$.) *Lösung*. Für a=0 oder b=0 ist die Aussage trivial. Wir können also a,b>0 annehmen. Für jedes x>0 gilt

$$0 \le (x-1)^2 = x^2 - 2x + 1,$$

wobei Gleichheit nur für x = 1 gilt. Hieraus folgt $x^2 + 1 \ge 2x$, also

$$x+\frac{1}{x}\geq 2$$
,

mit Gleichheit nur für x = 1. Für $x := \frac{a}{\sqrt{ab}}$ folgt somit

$$2 \le \frac{a}{\sqrt{ab}} + \frac{\sqrt{ab}}{a} = \frac{a}{\sqrt{ab}} + \frac{b}{\sqrt{ab}}.$$

Hieraus erhalten wir wie gewünscht

$$\sqrt{ab} \leq \frac{1}{2}(a+b)$$
.

Die Gleichheit gilt nur für $x = \frac{a}{\sqrt{ab}} = 1$, d. h. für a = b.