Prof. Dr. Ulrich Kohlenbach PD Dr. Achim Blumensath MSc Eyvind Briseid

Wintersemester 2009/2010

Analysis I Tutorium 1

Terminologie zur Mengenlehre

Das kartesische Produkt zweier Mengen A und B ist die Menge aller Paare (a, b) mit $a \in A$ und $b \in B$, formal:

$$A \times B := \{ (a, b) : a \in A, b \in B \}.$$

Eine *binäre Relation* auf einer Menge A ist eine Teilmenge $R \subseteq A \times A$. So eine Relation ist

- reflexiv, falls $(a, a) \in R$ für alle $a \in A$ gilt;
- *symmetrisch*, falls $(a, b) \in R$ impliziert $(b, a) \in R$;
- *transitiv*, falls aus $(a, b) \in R$ und $(b, c) \in R$ folgt $(a, c) \in R$.

Eine Relation R, welche reflexiv, symmetrisch und transitiv ist, heißt \ddot{A} quivalenzrelation. Ist R eine \ddot{A} quivalenzrelation und $a \in A$, so ist die \ddot{A} quivalenzklasse von a die Menge

$$[a]_R := \{ b \in A : (a, b) \in R \}.$$

Statt $(a, b) \in R$ schreiben wir auch a R b.

Eine *Funktion* $f:A\to B$ ist ein Tripel (F,A,B), wobei $F\subseteq A\times B$ eine Relation (der *Graph* der Funktion f) ist, welche folgende Bedingung erfüllt:

Zu jedem $a \in A$ gibt es genau ein $b \in B$ mit $(a, b) \in F$.

Wir bezeichnen dieses b als Wert von a unter f und schreiben dafür auch f(a).

Eine Funktion $f: A \rightarrow B$ ist

- *injektiv*, falls f(x) = f(y) nur für x = y gilt;
- surjektiv, falls es zu jedem $y \in B$ ein $x \in A$ gibt mit f(x) = y;
- *bijektiv*, falls *f* sowohl injektiv, als auch surjektiv ist.

Die Menge aller Funktionen von A nach B bezeichnen wir mit B^A .

Aufgabe 1

Welche der folgenden Funktionen sind injektiv, welche sind surjektiv?

(a)
$$f_1: \mathbb{R} \to \mathbb{R}: x \mapsto x^2$$

Lösung. Ist weder injektiv noch surjektiv, da $f_1(-1) = 1 = f_1(1)$ gilt und es kein $x \in \mathbb{R}$ mit f(x) = -1 gibt.

(b)
$$f_2: \mathbb{R} \to \mathbb{R}: x \mapsto x^3$$

Lösung. Ist injektiv und surjektiv, denn

$$x^3 = y^3 \implies x = y$$

und für jedes $y \in \mathbb{R}$ gilt f(x) = y für $x := \sqrt[3]{y}$.

(c) $f_3: \mathbb{R} \to [-1,1]: x \mapsto \sin x$

Lösung. f_3 ist nicht injektiv, da $\sin 2\pi = 0 = \sin 0$, aber surjektiv, da es zu jedem $y \in [-1,1]$ ein $x \in \mathbb{R}$ mit $\sin x = y$ gibt.

(d) $f_4: \mathbb{R} \to \mathbb{R}: x \mapsto \sin x$

Lösung. f_4 ist weder injektiv (siehe f_3) noch surjektiv. Z. B. gibt es zu y = 2 kein x mit sin x = y.

Aufgabe 2

Welche der folgenden Relationen sind reflexiv, welche symmetrisch, und welche transitiv?

(a) $R_1 := \{ (x, y) \in \mathbb{R}^2 : x \le y \}$

Lösung. R_1 ist reflexiv und transitiv, da immer $x \le x$ gilt und aus $x \le y \le z$ $x \le z$ folgt. R_1 ist nicht symmetrisch, da 1 ≤ 2 aber 2 \nleq 1.

(b) $R_2 := \{ (x, y) \in \mathbb{R}^2 : x \neq y \}$

Lösung. R_2 ist symmetrisch, da aus $x \neq y$ $y \neq x$ folgt, aber weder reflexiv noch transitiv, da z. B.

- 1 ≠ 1 nicht gilt,
- $1 \neq 2$ und $2 \neq 1$ gilt, nicht aber $1 \neq 1$.
- (c) $R_3 := \{(x, y) \in \mathbb{R}^2 : |x y| < 1\}$

Lösung. R_3 ist reflexiv und symmetrisch, da |x-x|=0<1 und |x-y|=|y-x|, aber nicht transitiv, da $|1-\frac{3}{2}|<1$ und $|\frac{3}{2}-2|<1$, aber $|1-2| \le 1$.

(d) $R_4 := \{ (x, y) \in \mathbb{R}^2 : xy > 0 \text{ oder } x = y = 0 \}$

Lösung. R_4 ist reflexiv, da für alle x entweder $x^2 > 0$ oder x = 0 gilt, symmetrisch, da xy = yx gilt, und transitiv, da aus xy > 0 und yz > 0 folgt xz > 0.

Aufgabe 3

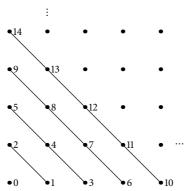
Geben Sie Bijektionen zwischen folgenden Mengen an:

(a) $\mathbb{N} \to \mathbb{Z}$

Lösung. $f(n) := \begin{cases} n/2 & \text{für gerade } n, \\ -(n+1)/2 & \text{für ungerade } n. \end{cases}$

(b) $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$

Lösung. $f(k,n) := \frac{1}{2}(k+n)(k+n+1) + n$



(c) $A \times (B \times C) \rightarrow (A \times B) \times C$

Lösung. f(a, (b, c)) = ((a, b), c)

 $(*) (A^B)^C \rightarrow A^{B \times C}$

Lösung. Für $g: C \to A^B$ setzen wir f(g) := g', wobei $g': B \times C \to A$ die Funktion mit g'(b, c) := (g(c))(b) ist.