Fachbereich Mathematik Prof. Dr. Ulrich Kohlenbach PD Dr. Achim Blumensath MSc Eyvind Briseid



04.12.2009

## 8. Übung Analysis I Wintersemester 2009/2010

(G8.1)

- (i) Zeigen Sie, dass  $\lim_{n\to\infty} \sqrt[n]{n} = 1$  und  $\lim_{n\to\infty} \sqrt[n]{n+1} = 1$ .
- (ii) Sei  $0 < \alpha < 1$ . Die Folge  $(a_n)_{n \in \mathbb{N}}$  sei definiert durch:

$$a_0 := \alpha, \qquad a_{n+1} := \frac{2a_n + 1}{3}, \qquad \text{für } n \in \mathbb{N}.$$

Zeigen Sie, dass  $(a_n)_{n\in\mathbb{N}}$  konvergiert, und bestimmen Sie den Grenzwert.

## (G8.2)

Sei  $(a_n)_{n\in\mathbb{N}}$ eine beschränkte Folge reeller Zahlen und H die Menge ihrer Häufungspunkte. Man zeige

$$\limsup_{n \to \infty} a_n = \sup H, \quad \liminf_{n \to \infty} a_n = \inf H$$

und sup  $H \in H$ , inf  $H \in H$ .

(Das heißt, wir zeigen, dass der Limes superior und der Limes inferior das Maximum bzw. das Minimum der Menge der Häufungspunkte sind.)

## Hausaufgaben

(H8.3)

Die Folge  $(a_n)_{n\in\mathbb{N}}$  sei definiert durch

$$a_0 := \frac{5}{2}, \quad a_{n+1} := \frac{a_n^2 + 6}{5}.$$

Man beweise, dass die Folge  $(a_n)_{n\in\mathbb{N}}$  konvergiert und bestimme ihren Grenzwert.

(H8.4)

Es seien  $(a_n)_{n\in\mathbb{N}}$  und  $(b_n)_{n\in\mathbb{N}}$  beschränkte Folgen in  $\mathbb{R}$ .

(i) Zeigen Sie

$$\liminf_{n \to \infty} a_n + \liminf_{n \to \infty} b_n \leq \liminf_{n \to \infty} (a_n + b_n) \leq \limsup_{n \to \infty} (a_n + b_n)$$

$$\leq \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n.$$

(ii) Geben Sie zwei Folgen  $(a_n)_{n\in\mathbb{N}}$  und  $(b_n)_{n\in\mathbb{N}}$  an, für die in (i) überall "<" gilt.