Fachbereich Mathematik

PD Dr. Robert Haller-Dintelmann

PD Dr. Horst Heck

Dipl.-Math. Christian Komo

Analysis III – Funktionentheorie

4. Übung mit Lösungshinweisen

Gruppenübungen

(G1)

Es sei $G \subset \mathbb{C}$ ein Gebiet und f eine holomorphe Funktion auf G, die nicht konstant ist.

- (a) In $z_0 \in G$ habe |f| ein lokales Minimum. Zeigen Sie, dass dann $f(z_0) = 0$ gilt.
- (b) Das Gebiet G sei beschränkt, und f habe eine stetige Fortsetzung $\tilde{f}: \overline{G} \to \mathbb{C}$. In G habe f keine Nullstellen. Zeigen Sie, dass dann $|\tilde{f}|$ sein Minimum auf dem Rand ∂G annimmt.
- (c) Zusatzaufgabe: Gewinnen Sie daraus einen neuen Beweis für die Tatsache, dass jedes Polynom vom Grad $n \geq 1$ mindestens eine komplexe Nullstelle besitzt (vgl. Fundamentalsatz der Algebra, Kapitel II, Satz 2.8).
- LÖSUNG: (a) Wäre $f(z_0) \neq 0$, so hätte f auf einer offenen Umgebung U von z_0 keine Nullstelle. Dann wäre $g: U \to \mathbb{C}$, $g(z) := \frac{1}{f(z)}$ holomorph, und der Betrag von g hätte in z_0 ein lokales Maximum, was dem Maximumprinzip widerspricht (da mit f auch g nicht konstant ist, als Folgerung des Identitätssatzes).
- (b) Wenn \tilde{f} Nullstellen hat, dann liegen diese per Voraussetzung auf ∂G , und $|\tilde{f}|$ wird dort minimal. Andernfalls ist $1/\tilde{f}$ stetig auf \overline{G} und holomorph auf G, so dass $\left|1/\tilde{f}\right|$ nach dem Maximumprinzip in einem $z_0 \in \partial G$ sein Maximum annimmt. Dann wird $|\tilde{f}|$ in z_0 minimal.
- (c) Es sei p ein komplexes Polynom vom Grad $n \geq 1$. Analog zum Beweis von Kapitel II, Satz 2.8 kann man zeigen, dass

$$p(z) \ge \frac{3}{4} |a_n| r^n$$
 für $|z| \ge r := \max_{0 \le k \le n} (4n \left| \frac{a_k}{a_n} \right|) > 1$

gilt. Insbesondere gilt also $p(z) \geq 3|a_0| = 3|p(0)|$ für $z \geq r$. Somit nimmt die Funktion $|p|_{\overline{U_r(0)}}|$ ihr Minimum also nicht auf $\partial \overline{U_r(0)}$ an. Nach (b) muss p in $U_r(0)$ eine Nullstelle haben.

(G 2)

Geben Sie einen geeigneten Definitionsbereich an, auf dem man $z \mapsto \sqrt{\log z}$ definieren kann.

LÖSUNG: Es gilt $\log(\mathbb{C}\setminus(-\infty,0])=\{z\in\mathbb{C}:-\pi<\mathrm{Im}\,z<\pi\}=:G.$ Es sei nun $\overline{D}:=\{z\in\mathbb{C}:|z|\leq 1\}\subset G.$ Da

$$\int_{\partial \overline{D}} \frac{1}{z} \, dz = 2\pi i,$$

besitzt 1/z auf G keine Stammfunktion und somit exisitiert auch kein Zweig des Logarithmus auf G (siehe Vorlesung). Wir müssen also eine Linie, z.B. $(-\infty, 0]$ aus G herausnehmen. Es gilt

 $\exp(G\setminus (-\infty,0])=\mathbb{C}\setminus (-\infty,1]$. Auf $G\setminus (-\infty,0]$ hat 1/z eine Stammfunktion und somit exisiert auch ein Zweig des Logarithmus auf $G\setminus (-\infty,0]$, d.h. es existiert ein $g:G\setminus (-\infty,0]\to \mathbb{C}$ mit $e^{g(z)}=z$. Nun lässt sich $f(z)=\sqrt{\log z}$ auf $\mathbb{C}\setminus (-\infty,1]$ durch $\sqrt{\log z}=e^{1/2g(\log z)}, z\in \mathbb{C}\setminus (-\infty,1]$ definieren.

(G 3)

Beweisen Sie das Lemma von Schwarz (Kapitel II, Satz 3.12):

Es sei $D:=\{z\in\mathbb{C}:|z|<1\},\ f:D\to\mathbb{C}$ eine holomorphe Funktion mit f(0)=0 und $|f(z)|\leq 1$ für alle $z\in D$. Dann gilt

- 1. $|f(z)| \le |z|$ für alle $z \in D$ und
- 2. $|f'(0)| \le 1$.

Ferner gilt $|f(z_0)| = |z_0|$ für ein $z_0 \in D \setminus \{0\}$ genau dann, wenn |f'(0)| = 1 und genau dann, wenn $f(z) = \lambda z$ für ein $\lambda \in \mathbb{C}$ mit $|\lambda| = 1$ gilt.

LÖSUNG: Es sei $D := \{z \in \mathbb{C} : |z| < 1\}$ die Einheitskreisscheibe. Nach Kapitel II, Satz 3.3 ist f in eine Potenzreihe mit Konvergenzradius $r \geq 1$ entwickelbar, d.h.

$$f(z) = \sum_{k=0}^{\infty} a_k z^k.$$

Wegen f(0) = 0 gilt $a_0 = 0$ und somit

$$f(z) = z \sum_{k=1}^{\infty} a_k z^{k-1} =: z \cdot g(z).$$

Die Funktion g ist als Potenzreihe mit Konvergenzradius $r \geq 1$ holomorph in D. Für festes $c \in (0,1)$ ist

$$\max_{|z|=1} |g(z)| = \max_{|z|=1} \left| \frac{f(z)}{z} \right| = \max_{|z|=1} \frac{|f(z)|}{c} \le \frac{1}{c}.$$

Aus dem dem Maximumsprinzip folgt nun

$$|g(z)| \leq \frac{1}{c} \quad \text{für alle} \quad |z| \leq c.$$

Lassen wir nun $c \to 1$ gehen, folgt $|g(z)| \le 1$ für alle $z \in D$ und somit $|f(z)| \le |z|$ für alle $z \in D$. Für die Ableitung ergibt sich

$$|f'(0)| = \left| \lim_{z \to 0} \frac{f(z)}{z} \right| = \left| \lim_{z \to 0} g(z) \right| = |g(0)| \le 1.$$

Somit sind die Aussagen (a) und (b) bewiesen. Falls |f'(0)| = 1 dann gilt |g(0)| = 1. Also nimmt g sein Betragsmaxiumum im Inneren von D an. Das Maximumsprinzip liefert nun, dass g eine konstante Funktion mit Betrag 1 ist, d.h. $g(z) = \lambda$ für ein $\lambda \in \mathbb{C}$ mit $|\lambda| = 1$. Also ist $f(z) = \lambda$. Hieraus folgt natürlich sofort |f(z)| = |z| für alle $z \in D$ und |f'(0)| = 1.

Falls $|f(z_0)| = |z_0|$ für ein $z_0 \in D \setminus \{0\}$ dann folgt $|g(z_0)| = 1$. Nun folgt analog zu oben, dass $f(z) = \lambda z$ für ein $\lambda \in \mathbb{C}$ mit $|\lambda| = 1$.

Hausübungen

(H 1) (6 Punkte)

Sei $f: \mathbb{C} \to \mathbb{C}$ eine ganze Funktion, die kein Polynom ist (man bezeichnet f auch als ganze, transzendente Funktion). Dann konvergiert die Taylorreihe $\sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z-z_0)^n$ von f in z_0 nicht gleichmäßig auf \mathbb{C} .

LÖSUNG: Wir nehmen indirekt an, dass die Taylorreihe von f in z_0 auf \mathbb{C} gleichmäßig konvergent ist. Es folgt mit dem notwendigen Kriterium für die Konvergenz von Reihen

$$\lim_{n \to \infty} \sup_{z \in \mathbb{C}} \frac{|f^{(n)}(z_0)|}{n!} |z - z_0|^n = 0.$$

Somit finden wir zu irgendeinem $\epsilon > 0$ ein $n_0 \in \mathbb{N}$, so dass

$$\frac{|f^{(n)}(z_0)|}{n!}|z - z_0|^n \le \epsilon \tag{1}$$

für alle $z \in \mathbb{C}$ und für alle $n \geq n_0$ gilt. Da f kein Polynom ist, bricht die Taylorreihe nicht ab, d.h., es existiert ein $m > n_0$, so dass $f^{(m)}(z_0) \neq 0$ ist. Wir können somit gewiss ein $w \in \mathbb{C}$ bestimmen, so dass

$$\frac{|f^{(m)}|(z_0)}{m!}|w - z_0|^m > \epsilon$$

ist. Dies ist aber ein Widerspruch zu (1).

(H 2) (6 Punkte)

- (a) Sei $G \subseteq \mathbb{C}$ ein Gebiet. Bestimmen Sie alle holomorphen Funktionen $f: G \to \mathbb{C}$ mit der Eigenschaft |f(z)| = c für alle $z \in \mathbb{C}$ mit einer Konstanten $c \in \mathbb{C}$.
- (b) Wir betrachten auf $G := \mathbb{C} \setminus \{z \in \mathbb{C}; \operatorname{Re}(z) \leq 0, \operatorname{Im}(z) = 0\}$ den Hauptzweig Log des Logarithmus, also den Zweig des Logarithmus, dessen Einschränkung auf die positive reelle Achse mit dem üblichen reellen Logarithmus ln übereinstimmt. In welchen Sinne gilt die Gleichung

$$Log(z_1 z_2) = Log(z_1) + Log(z_2)$$

mit $z_1, z_2 \in G$.

(c) Wie in der Vorlesung definieren wir für ein beliebiges $\alpha \in \mathbb{C}$

$$f(z) := z^{\alpha} := e^{\alpha \operatorname{Log}(z)}, \quad z \in G.$$

Zeigen Sie, dass $z^{\alpha+\beta}=z^{\alpha}z^{\beta}$ für α , $\beta\in\mathbb{C}$ und $z\in G$ ist. Zeigen Sie weiterhin, dass f auf G differenzierbar ist mit Ableitung $f'(z)=\alpha z^{\alpha-1}$. Berechnen Sie i^i .

- LÖSUNG: (a) Aus der Vorlesung ist bekannt, dass holomorphe Funktionen Gebiete auf Gebiete abbilden. Da das Bild f(G) von f aber wegen |f(z)| = c für beliebiges $z \in G$ in dem Kreis mit Radius c um Null enthalten ist und dieser sicherlich kein Gebiet darstellt, können wir schließen, dass f konstant ist.
 - (b) Wir betrachten z_1, z_2 in G und stellen diese in der Form

$$z_1 = |z_1|e^{\phi_1 i} \quad \text{mit } \phi_1 \in [-\pi, \pi[\,,$$

$$z_2 = |z_2|e^{\phi_2 i} \quad \text{mit } \phi_2 \in [-\pi, \pi[\,,$$

$$z_1 z_2 = |z_1||z_2|e^{\phi i} \quad \text{mit } \phi \in [-\pi, \pi[\,,$$

dar. Wir erhalten damit

$$Log(z_1) + Log(z_2) = \ln|z_1| + \ln|z_2| + \phi_1 i + \phi_2 i,$$

$$Log(z_1 z_2) = \ln|z_1| + \ln|z_2| + \phi i.$$

Somit gilt die in der Aufgabenstellung angegebene Gleichung als Identität über den komplexen Zahlen genau dann, wenn $\phi_1 + \phi_2 \in [-\pi, \pi[$ gilt. Dies ist sicherlich erfüllt für $\text{Re}(z_1) > 0$ und $\text{Re}(z_2) > 0$. Jedoch folgt durch eine einfache Rechnung sofort, dass

$$e^{\operatorname{Log}(z_1 z_2)} = z_1 z_2$$

gilt, das heißt, $Log(z_1z_2)$ ist stets **ein** Logarithmus von z_1z_2 . Man kann die in der Aufgabenstellung angegeben Identität auch in diesem Sinne verstehen.

(c) Wir erhalten

$$z^{\alpha}z^{\beta} = e^{\alpha \text{Log}z}e^{\beta \text{Log}z} = e^{(\alpha+\beta)\text{Log}z} = z^{\alpha+\beta}$$
.

Mit der Kettenregel erhält man

$$f'(z) = \alpha e^{\alpha \operatorname{Log}(z)} \frac{1}{z} = \alpha \frac{e^{\alpha \operatorname{Log}(z)}}{e^{\operatorname{Log}(z)}} = \alpha z^{(\alpha - 1)}.$$

Zu guter Letzt ist

$$i^i = e^{i\text{Log}i} = e^{i\frac{\pi}{2}i} = e^{-\frac{\pi}{2}}.$$

(H 3) (6 Punkte)

- (a) Sei $I \subset \mathbb{R}$ ein offenes Intervall. Wir nennen eine Funktion $f: I \subseteq \mathbb{R} \to \mathbb{R}$ reell analytisch, falls für jedes $x \in I$ ein offenes Intervall I_x existiert auf dem sich f in eine Potenzreihe entwickeln lässt. Wir nennen eine holomorphe Funktion $F: G \to \mathbb{C}$ auf einem Gebiet $G \subseteq \mathbb{C}$ holomorphe Fortsetzung von f, falls $I \subseteq G$ und f(x) = F(x) für $x \in I$ gilt.
 - Zeigen Sie: Eine Funktion $f: I \subseteq \mathbb{R} \to \mathbb{R}$ auf einem offenen Intervall $I \subseteq \mathbb{R}$ besitzt genau dann eine holomorphe Fortsetzung, falls sie reell analytisch ist.
- (b) Sie $D \subseteq \mathbb{C}$ eine offene Menge und $f: D \to \mathbb{C}$ eine holomorphe Funktion. Wir entwickeln f in $z_0 \in D$ in eine Potenzreihe $\sum_{n=0}^{\infty} a_n(z-z_0)^n$. Angenommen, diese Potenzreihe konvergiert in einem z_1 . Gilt dann $f(z_1) = \sum_{n=0}^{\infty} a_n(z_1-z_0)^n$, falls z_1 in dem Definitionsbereich D von f liegt?
- LÖSUNG: (a) Aus der Vorlesung ist bekannt, dass sich holomorphe Funktionen lokal in Potenzreihen entwickeln lassen. Somit folgt aus der holomorphen Fortsetzbarkeit von f, dass f reell analytisch ist Wir nehmen nun an, dass f reell analytisch ist, d.h., dass es für $y \in I$ ein offenes Intervall $I_y :=]y \epsilon(y)$, $y + \epsilon(y)[$ gibt auf dem sich f in eine Potenzreihe entwickeln lässt. Wir wissen, dass diese Potenzreihe die Taylorreihe von f ist, d.h. es gilt

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(y)}{n!} (x - y)^n$$

für alle $x \in I_y$. Wir definieren das Gebiet G durch $G := \bigcup_{y \in I} B_{\epsilon(y)}(y)$. Für ein beliebiges $z \in G$ wählen wir ein $y \in X$, so dass $z \in B_{\epsilon(y)}(y)$ gilt und definieren

$$F(z) := \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (z - y)^n.$$

Die Wohldefiniertheit von F folgt daraus, dass für $x \in B_{\epsilon(y)}(y) \cap B_{\epsilon(y')}(y') \cap I$

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(y)}{n!} (x-y)^n = f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(y')}{n!} (x-y')^n$$

gilt. Dies bedeutet, dass die Potenzreihen $\sum_{n=0}^{\infty} \frac{f^{(n)}(y)}{n!} (z-y)^n$ und $\sum_{n=0}^{\infty} \frac{f^{(n)}(y')}{n!} (z-y')^n$ auf $B_{\epsilon(y)}(y) \cap B_{\epsilon(y')}(y') \cap I$ übereinstimmen. Der Identitätssatz liefert uns, dass

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(y)}{n!} (z-y)^n = \sum_{n=0}^{\infty} \frac{f^{(n)}(y')}{n!} (z-y')^n$$

für alle $z \in B_{\epsilon(y)}(y) \cap B_{\epsilon(y')}$ gilt. Da sich F nach Konstruktion lokal in eine Potenzreihe entwickeln lässt und Potenzreihen auf ihrem Konvergenzkreis holomorph sind, folgt, dass f holomorph ist. Wir haben F gerade so definiert, dass f = F auf I gilt.

(b) Die Beziehung $f(z_1) = \sum_{n=0}^{\infty} a_n (z_1 - z_0)^n$ braucht nicht zu gelten. Wir können zwei disjunkte offene Kugeln K_1 und K_2 wählen und holomorphe Funktionen $f_1: K_1 \to \mathbb{C}$ und $f_2: K_2 \to \mathbb{C}$. Die Funktion

$$f(z) := \begin{cases} f_1(z), & z \in K_1, \\ f_2(z), & z \in K_2. \end{cases}$$

ist ebenfalls holomorph, da komplexe Differenzierbarkeit eine lokale Eigenschaft ist. Falls wir F in irgendeinem $z_0 \in K_1$ in eine Potenzreihe $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ entwickeln, so konvergiert diese mindestens in K_1 . Sie kann aber auch in Punkten aus K_2 konvergieren. Da die Wahl von f_1 und f_2 unabhängig voneinander sind, ist klar, dass $\sum_{n=0}^{\infty} a_n (z_2-z_0)^n$ für $z_2 \in K_2$ nichts mit $f(z_2) = f_2(z_2)$ zu tun haben muss.