

Analysis III Gewöhnliche Differentialgleichungen

6. Übung mit Lösungshinweisen

Gruppenübungen

(G 1) (Mathematisches Pendel mit Reibung)

Im Skript, Kapitel IV wird die Gleichung des mathematischen Pendels ohne Reibung diskutiert. Die Gleichung des mathematischen Pendels mit Reibung lautet

$$u''(t) + \varepsilon u'(t) + \sin u(t) = 0, \quad t \ge 0,$$

wobei $\varepsilon > 0$ gilt.

- (a) Überführen Sie diese Gleichung in das zugehörige System 1. Ordnung v'(t) = f(v(t)).
- (b) Bestimmen Sie die kritischen Punkte des Systems v'(t) = f(v(t)).
- (c) Bestimmen Sie das Stabilitätsverhalten der kritischen Punkte.

LÖSUNG: (a) Wir setzen $v=(u,u')^{\rm T}$ und $f(x,y)=(y,-\varepsilon y-\sin x)^{\rm T}$. Das zugehörige System 1. Ordnung lautet nun

$$v'(t) = \begin{pmatrix} u \\ u' \end{pmatrix}' = \begin{pmatrix} u' \\ -\varepsilon u' - \sin u \end{pmatrix} = f(v).$$

- (b) Die kritischen Punkte von f, d.h. die Punkte (x,y) mit f(x,y)=0, sind $(k\pi,0)$ für $k\in\mathbb{Z}$.
- (c) Es gilt

$$Df(x,y) = \begin{pmatrix} 0 & 1 \\ -\cos x & -\varepsilon \end{pmatrix},$$

sowie

$$Df(k\pi,0) = \left(\begin{array}{cc} 0 & 1 \\ -1 & -\varepsilon \end{array}\right) \text{für } k \text{ gerade}, \quad \text{und} \quad Df(k\pi,0) = \left(\begin{array}{cc} 0 & 1 \\ 1 & -\varepsilon \end{array}\right) \text{für } k \text{ ungerade}.$$

Wir bestimmen zunächst das Stabiltätsverhalten der kritischen Punkte $(k\pi, 0)$ für k gerade: Das charakteristische Polynom von $Df(k\pi, 0)$ ist durch $p_1(\lambda) = \lambda^2 + \varepsilon \lambda + 1$ gegeben. Als Eigenwerte erhält man

$$\lambda_{1/2} = -\frac{\varepsilon}{2} \pm \sqrt{\frac{\varepsilon^2 - 4}{4}}.$$

Wir unterscheiden nun zwei Fälle.

Fall $1 \cdot \varepsilon < 2$

In diesem Fall ist $\varepsilon^2 - 4 < 0$, d.h. $\sqrt{\frac{\varepsilon^2 - 4}{4}} \in i\mathbb{R}$. Also gilt $\operatorname{Re}\lambda_1 = \operatorname{Re}\lambda_2 = -\frac{\varepsilon}{2} < 0$. Nach dem Prinzip der linearisierten Stabilität (Kapitel IV, Theorem 1.3) sind die kritischen Punkte

 $(k\pi,0)$ für k gerade asymptotisch stabil.

Fall 2: $\varepsilon \geq 2$.

In diesem Fall ist $\sqrt{\frac{\varepsilon^2-4}{4}} \in \mathbb{R}$ und es gilt $\sqrt{\frac{\varepsilon^2-4}{4}} < \sqrt{\frac{\varepsilon^2}{4}} = \frac{\varepsilon}{2}$. Die beiden Eigenwerte $\lambda_{1/2}$ sind reell und negativ. Nach dem Prinzip der linearisierten Stabilität (Kapitel IV, Theorem 1.3) sind die kritischen Punkte $(k\pi, 0)$ für k gerade asymptotisch stabil.

Nun bestimmen wir das Stabiltätsverhalten der kritischen Punkte $(k\pi,0)$ für k ungerade: Das charakteristische Polynom von $Df(k\pi,0)$ ist durch $p_2(\lambda)=\lambda^2+\varepsilon\lambda-1$ gegeben. Als Eigenwerte erhält man

$$\lambda_{1/2} = -\frac{\varepsilon}{2} \pm \sqrt{\frac{\varepsilon^2 + 4}{4}}.$$

Es gilt $\sqrt{\frac{\varepsilon^2+4}{4}} > \sqrt{\frac{\varepsilon^2}{4}} = \frac{\varepsilon}{2}$. Somit liegt jewils ein positiver und ein negativer Eigenwert vor. Nach dem Prinzip der linearisierten Stabilität (Kapitel IV, Theorem 1.3) sind die Punkte $(k\pi,0)$ für k ungerade instabil.

(G2)

Bestimmen Sie ein Fundamentalsystem für die folgenden Differentialgleichungen:

(i)
$$y''(t) - 4y'(t) + 4y(t) = 0$$
, $t \ge 0$, (ii) $y'''(t) - 2y''(t) + 2y'(t) - y(t) = 0$, $t \ge 0$.

LÖSUNG: (i) Das charakteristische Polynom ist $A(\lambda) = \lambda^2 - 4\lambda + 4 = (\lambda - 2)^2$. Es hat $\lambda_1 = 2$ als Nullstelle mit Vielfachheit 2. Nach Kapitel III, Satz 5.3 bilden

$$\phi_1(t) = e^{2t}, \qquad \phi_2(t) = t e^{2t}$$

ein Fundamentalsystem.

(ii) Hier ist $A(\lambda) = \lambda^3 - 2\lambda^2 + 2\lambda - 1 = (\lambda - 1)(\lambda^2 - \lambda + 1)$. Daher sind die Nullstellen von $A(\lambda)$ gegeben durch

$$\lambda_1 = 1, \qquad \lambda_2 = \frac{1 + \sqrt{3}i}{2}, \qquad \lambda_3 = \frac{1 - \sqrt{3}i}{2}.$$

Somit ist

$$\phi_1(t) = e^t, \qquad \phi_2(t) = e^{\lambda_2 t}, \qquad \phi_3(t) = e^{\lambda_3 t}$$

ein Fundamentalsystem. Um ein reelles Fundamentalsystem zu bestimmen, definiere

$$\psi_1(t) := \phi_1(t)$$

$$\psi_2(t) := \frac{1}{2}(\phi_2(t) + \phi_3(t)) = \frac{1}{2}\left(e^{\frac{1}{2}t + i\frac{\sqrt{3}}{2}t} + e^{\frac{1}{2}t - i\frac{\sqrt{3}}{2}t}\right) = e^{\frac{1}{2}t}\cos\frac{\sqrt{3}}{2}t$$

$$\psi_3(t) := \frac{1}{2}(\phi_2(t) - \phi_3(t)) = e^{\frac{1}{2}t}\sin\frac{\sqrt{3}}{2}t.$$

Da $\frac{1}{2}\begin{pmatrix}1&1\\1&-1\end{pmatrix}$ invertierbar ist, und $\begin{pmatrix}\psi_2\\\psi_3\end{pmatrix}=\frac{1}{2}\begin{pmatrix}1&1\\1&-1\end{pmatrix}\begin{pmatrix}\phi_2\\\phi_3\end{pmatrix}$, ist auch ψ_1,ψ_2,ψ_3 ein Fundamentalsystem.

(G 3)

Es sei $A \in \mathbb{C}^{n \times n}$. Zeigen Sie:

- (a) Aus der Stabiltät der Nulllösung des Systems y'(t) = Ay(t) folgt im Allgemeinen nicht die Attraktivität der Nulllösung.
- (b) Ist die Nulllösung des Systems y'(t) = Ay(t) attraktiv, so ist sie stets auch stabil, damit also asymptotisch stabil.

Bemerkung: Im Allgmeinen folgt aus der Attraktivität einer Lösung nicht die Stabilität der Lösung.

LÖSUNG: (a) Wir betrachten

$$A = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right).$$

Die Eigenwerte von A sind $\pm i$. Das Phasenpotrait des Systems y' = Ay ist ein Wirbel/Zentrum. Man erkennt sofort, dass die Nulllösung stabil, aber nicht attraktiv ist.

(b) Wir nehmen an, die Nulllösung ist attraktiv, d.h. nach der Definition (Kapitel III, Definition 4.6) existiert ein $\delta > 0$, so dass für alle Lösungen $u(t) = e^{tA}x_0$ von

$$\begin{cases} x'(t) &= Ax(t), \\ x(0) &= x_0, \end{cases}$$

mit $|x_0| < \delta$ gilt:

$$\lim_{t \to \infty} |u(t)| = \lim_{t \to \infty} |e^{tA}x_0| = 0.$$

Insbesondere können wir also $x_0 = \frac{\delta}{2} \cdot e_i$ setzen, wobei e_i den *i*-ten Einheitsvektor des \mathbb{R}^n bezeichnet, und wir erhalten

$$\frac{\delta}{2} \lim_{t \to \infty} |e^{tA}(e_i)| = 0,$$

d.h. die Norm der n-Spalten von e^{tA} konvergieren alle gegen 0 für $t \to \infty$. Also folgt insbesondere, $\lim_{t\to\infty}\|e^{tA}\|=0$, d.h. die Matrixnorm von e^{tA} geht gegen 0 für $t\to\infty$. Diese Beobachtung zusammen mit der Stetigkeit von $t\mapsto e^{tA}$ garantieren nun die Existenz einer Konstante M, so dass $\|e^{tA}\|\leq M$ für alle $t\geq 0$.

Sei nun $\varepsilon > 0$ vorgegeben. Um die Stabilität der Nulllösung zu beweisen, muss gezeigt werden, dass ein $\tilde{\delta} > 0$ existiert, so dass für alle Lösungen $z(t) = e^{tA}w_0$ von

$$\begin{cases} w'(t) = Aw(t), \\ w(0) = w_0, \end{cases}$$

mit $|w_0| < \tilde{\delta}$ gilt:

$$|z(t)| = |e^{tA}w_0| \le \varepsilon \qquad t > 0.$$

Setzen wir nun $\tilde{\delta} = \frac{\varepsilon}{M}$, dann erhalten wir

$$|e^{tA}w_0| \le ||e^{tA}|||w_0| \le M|w_0| \le \varepsilon$$

für alle $|w_0|<\tilde{\delta}$ und somit haben wir die Stabilität der Nulllösung gezeigt.