Fachbereich Mathematik Prof. Dr. Reinhard Farwig Birgit Debrabant Felix Riechwald Raphael Schulz

28.11.2008

Analysis I für M, LaG, Ph

7. Übung

Gruppenübung

G1 Cauchy-Produkt

i) Sei $q \in (-1,1)$. Man finde eine Folge $(c_n)_{n \in \mathbb{N}_0}$ mit $c_n \neq 0$ für alle $n \in \mathbb{N}_0$, so dass

$$\frac{1}{(1-q)^2} = \sum_{n=0}^{\infty} c_n q^n.$$

ii) Es sei $a_0 = -1, b_0 = 2, a_k = 1$ und $b_k = 2^k$ für $k \ge 1$. Zeige, dass die aus den Folgen $(a_n), (b_n)$ gebildeten Reihen jeweils divergieren, ihr Cauchy-Produkt jedoch nicht.

G2 Topologie

- i) Man zeige die folgenden Aussagen über innere Punkte:
 - a) Sei x ein innerer Punkt der Menge M. Dann ist x auch Häufungspunkt von M.
 - b) Sei $a \in \mathbb{R}$. Die einelementige Menge $\{a\}$ hat keine inneren Punkte und keine Häufungspunkte.
 - c) Die Mengen \mathbb{Q} , $\mathbb{R}\setminus\mathbb{Q}$ haben keine inneren Punkte.
- ii) Sind die Mengen \mathbb{R} und \emptyset offen oder abgeschlossen?
- iii) Ist die Menge $M = \{(-1)^n \frac{1}{n} \mid n \in \mathbb{N}\}$ offen oder abgeschlossen?

G3 Kompaktheit

- i) Seien $A, B \subseteq \mathbb{R}$ kompakte Teilmengen. Zeige, daß $A \cup B$ ebenfalls kompakt ist.
- ii) Seien A_k , $k \in \mathbb{N}$, kompakte Teilmengen von \mathbb{R} . Dann ist $\bigcap_{k=1}^{\infty} A_k$ ebenfalls kompakt.
- iii) Gib ein Beispiel an, in dem die Vereinigung von unendlich vielen kompakten Mengen A_k mit $k \in \mathbb{N}$ nicht kompakt ist.

Hausübung

H1 Absolute Konvergenz (4 Punkte)

i) Zeige, dass die Reihe

$$C(x) := \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$

für alle $x \in \mathbb{R}$ absolut konvergiert.

ii) Zeige mit Hilfe des Cauchy-Produkts, dass das folgende Additionstheorem gilt:

$$C(2x) = 2(C(x))^2 - 1.$$

(Hinweis: Verwende eine modifizierte Version des binomischen Lehrsatzes, mit $\sum_{k=0}^{n} {2n \choose 2k} = 2^{2n-1}$ für $n \ge 1$ (ohne Beweis).)

(Nebenbei: Die vorliegende Reihe C(x) ist gerade die trigonometrische Funktion $\cos x$.)

H2 Konvergenzkriterium von Raabe (4 Punkte)

i) Man beweise das Konvergenzkriterium von Raabe: Es sei $(a_k)_{k\in\mathbb{N}}$ eine Folge mit $a_k > 0$. Existieren nun d > 1 und $k_0 \in \mathbb{N}$, so dass

$$\frac{a_{k+1}}{a_k} \le 1 - \frac{d}{k}$$

für alle $k \geq k_0$ gilt, dann ist die Reihe $\sum_{k=1}^{\infty} a_k$ konvergent.

(Hinweis: Stelle obige Ungleichung um und konstruiere daraus eine konvergente Teleskopsumme)

ii) Sei $s \geq 1$ eine reelle Zahl. Zeige die Konvergenz der Reihe

$$\sum_{k=1}^{\infty} \frac{s(s-1) \cdot \dots \cdot (s-k+1)}{k!}.$$

H3 Rand (4 Punkte)

Sei $A \subseteq \mathbb{R}$. Ein Punkt $a \in \mathbb{R}$ heißt Randpunkt von A, wenn in jeder Umgebung von a sowohl ein Punkt von A als auch ein Punkt von $\mathbb{R} \setminus A$ liegt. Die Menge aller Randpunkte von A bezeichnen wir mit ∂A . Man zeige:

- i) $\partial A = \partial(\mathbb{R} \backslash A)$.
- ii) Der Rand ∂A ist abgeschlossen.

Bestimme den Rand der folgenden Mengen:

iii) [0,1), \mathbb{Q} und \mathbb{R} .