Analysis I für M, LaG, Ph

10. Übung Lösungsvorschlag

Gruppenübung

G1 Differentiation I

Die Funktion $\cosh : \mathbb{R} \to \mathbb{R}$ ist definiert durch

$$\cosh(x) := \frac{1}{2} \left(e^x + e^{-x} \right)$$

und heißt $Cosinus\ Hyperbolicus$. Auf $(0,\infty)$ besitzt cosh eine Umkehrfunktion arcosh : $(1,\infty) \to (0,\infty)$, diese nennt man $Areacosinus\ Hyperbolicus$. Man zeige die Darstellung

$$\operatorname{arcosh}(x) = \log\left(x + \sqrt{x^2 - 1}\right).$$

Differenziere die folgenden Funktionen auf passenden Definitionsbereichen:

$$\cosh(x)$$
, $\operatorname{arcosh}(x)$, $\sqrt[x]{x}$, $x^{\log x}$

Sei $y = \cosh(x)$ für ein $x \in (0, \infty)$. Wir substituieren $\xi := e^x$ und erhalten $y = \frac{1}{2} \left(\xi + \frac{1}{\xi} \right)$. Auflösen nach ξ ergibt nun $\xi = y + \sqrt{y^2 - 1}$. Daraus erhalten wir die gesuchte Darstellung

$$\operatorname{arcosh}(y) = x = \log\left(y + \sqrt{y^2 - 1}\right).$$

Die Funktion cosh ist auf ganz \mathbb{R} differenzierbar und die Ableitung ist

$$(\cosh)'(x) = \frac{1}{2} (e^x - e^{-x}) =: \sinh(x).$$

Die Ableitung des Cosinus Hyperbolicus nennt man Sinus Hyperbolicus.

Die Ableitung des Areacosinus Hyperbolicus bestimmen wir auf zwei verschiedene Weisen. Zunächst über die oben bewiesene Darstellung. Sei also $x \in (1, \infty)$. Dann ergibt sich für die Ableitung:

$$(\operatorname{arcosh})'(x) = \left(\log\left(x + \sqrt{x^2 - 1}\right)\right)'(x) = \frac{1 + \frac{x}{\sqrt{x^2 - 1}}}{x + \sqrt{x^2 - 1}} = \frac{\sqrt{x^2 - 1} + x}{x^2 + x\sqrt{x^2 - 1} - 1}.$$

Verwenden wir allerdings die Ableitung über die Umkehrfunktion (s. Satz im Skript, Seite 111) so erhalten wir:

$$(\operatorname{arcosh})'(x) = \frac{1}{(\cosh)'(\operatorname{arcosh} x)} = \frac{1}{\sinh(\operatorname{arcosh} x)} = 2 \cdot \left(\frac{1}{x + \sqrt{x^2 - 1} - \frac{1}{x + \sqrt{x^2 - 1}}}\right)$$
$$= 2 \cdot \frac{x + \sqrt{x^2 - 1}}{(x + \sqrt{x^2 - 1})^2 - 1} = \frac{x + \sqrt{x^2 - 1}}{x^2 + x\sqrt{x^2 - 1} - 1}.$$

Nun bestimmen wir die Ableitung von $\sqrt[x]{x}$ für alle x > 0. Die angegebene Funktion ist definiert durch die Darstellung $\sqrt[x]{x} = e^{\frac{1}{x}\log(x)}$. Damit gilt für die Ableitung dieser Funktion:

$$\left(\sqrt[x]{x}\right)' = \left(e^{\frac{1}{x}\log(x)}\right)' = \left(-\frac{1}{x^2}\log(x) + \frac{1}{x}\frac{1}{x}\right)e^{\frac{1}{x}\log(x)} = (1 - \log(x))\frac{\sqrt[x]{x}}{x^2}.$$

Für alle x > 0 haben wir $x^{\log(x)} = e^{\log^2(x)}$ und daher

$$(x^{\log(x)})' = (e^{\log^2(x)})' = 2\log(x) \cdot \frac{1}{x} \cdot e^{\log^2(x)} = \frac{2\log(x)}{x} x^{\log(x)}.$$

G2 Mittelwertsatz

Beweise mit Hilfe des Mittelwertsatzes, dass für alle $x \in (0, \infty)$ die folgende Ungleichung gilt:

$$\log x \le x - 1$$
.

Zunächst sei $x \in (1, \infty)$. Mithilfe des Mittelwertsatzes (s. Satz im Skript, Seite 118) existiert ein $\xi \in (1, x)$, so dass

$$\frac{\log x}{x-1}=\frac{\log x-\log 1}{x-1}=\frac{1}{\xi}<1.$$

Damit folgt die Behauptung für alle $x \in (1, \infty)$. Für x = 1 ist die Aussage ohnehin trivial. Sei nun $x \in (0, 1)$. Dann gibt es ein $\xi \in (x, 1)$, so dass

$$\frac{\log x - \log 1}{x - 1} = \frac{1}{\xi} > 1.$$

Hieraus erhalten wir für alle $x \in (0,1)$

$$\log x < x - 1.$$

G3 Leibniz'sche Formel

Sei $D \subset \mathbb{R}$, ferner seien $f,g:D \to \mathbb{R}$ zwei n-mal differenzierbare Funktionen. Beweise die Leibniz'sche Formel

$$(f \cdot g)^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} f^{(n-k)}(x) g^{(k)}(x).$$

Diese Formel verallgemeinert die Produktregel.

(Hinweis: Es gilt $\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k}$ für $k \ge 1$.)

Den Beweis führen wir mit vollständiger Induktion. Für n=1 gilt $(f\cdot g)'(x)=f'(x)\cdot g(x)+f(x)\cdot g'(x)=\sum_{k=0}^1\binom{1}{k}f^{(1-k)}(x)g^{(k)}(x).$

Die Induktionsvoraussetzung (I.V.) sei, dass die Behauptung für $n \in \mathbb{N}$ wahr ist. Wir führen nun den Induktionsschritt:

$$(f \cdot g)^{(n+1)}(x) = (f'(x)g(x) + f(x)g'(x))^{(n)}$$

$$= (I.V.) \sum_{k=0}^{n} \binom{n}{k} (f')^{(n-k)}(x)g^{(k)}(x) + \sum_{k=0}^{n} \binom{n}{k} f^{(n-k)}(x)(g')^{(k)}(x)$$

$$= \sum_{k=0}^{n} \binom{n}{k} f^{(n-k+1)}(x)g^{(k)}(x) + \sum_{k=1}^{n} \binom{n}{k-1} f^{(n-k+1)}(x)g^{(k)}(x) + f(x)g^{(n+1)}(x)$$

$$= f^{(n+1)}(x)g(x) + \sum_{k=1}^{n} \left[\binom{n}{k} + \binom{n}{k-1} \right] f^{(n-k+1)}(x)g^{(k)}(x) + f(x)g^{(n+1)}(x)$$

$$= \sum_{k=0}^{n+1} \binom{n+1}{k} f^{(n+1-k)}(x)g^{(k)}(x).$$

Hausübung

H1 Kettenregel II (4 Punkte)

Sei $f:(0,\infty)\to\mathbb{R}$ n-mal differenzierbar. Beweise, dass

$$\frac{1}{x^{n+1}}f^{(n)}\left(\frac{1}{x}\right) = (-1)^n \left(x^{n-1}f\left(\frac{1}{x}\right)\right)^{(n)}$$

für alle $x \in (0, \infty)$ gilt.

Wir führen den Beweis mit vollständiger Induktion. Für n=1 ist die Gleichung offensichtlich richtig:

$$\left(f(\frac{1}{x})\right)' = -\frac{1}{x^2}f'(\frac{1}{x}).$$

Angenommen die Gleichung gilt für $k \leq n$. Wir werden die Geichung nun für n+1 nachweisen. Wir haben

$$(-1)^{n+1} \left(x^n f(\frac{1}{x}) \right)^{(n+1)} = (-1)^{n+1} \left(\left(x^n f(\frac{1}{x}) \right)' \right)^{(n)}$$

$$= (-1)^{n+1} n \left(x^{n-1} f(\frac{1}{x}) \right)^{(n)} - (-1)^{n+1} n \left(x^{n-2} f'(\frac{1}{x}) \right)^{(n)}$$

$$= -\frac{n}{x^{n+1}} f^{(n)}(\frac{1}{x}) - (-1)^{n-1} \left(x^{n-2} f'(\frac{1}{x}) \right)^{(n)}.$$

Durch Anwendung der Induktionshypothese auf f' gilt für den letzten Term

$$(-1)^{n-1} \left(x^{n-2} f'(\frac{1}{x}) \right)^{(n)} = (-1)^{n-1} \left(\left(x^{n-2} f'(\frac{1}{x}) \right)^{(n-1)} \right)' = \left(\frac{1}{x^n} f^{(n)}(\frac{1}{x}) \right)'.$$

Damit erhalten wir schließlich

$$(-1)^{n+1} \left(x^n f(\frac{1}{x}) \right)^{(n+1)} = -\frac{n}{x^{n+1}} f^{(n)}(\frac{1}{x}) - \left(\frac{1}{x^n} f^{(n)}(\frac{1}{x}) \right)'$$
$$= \frac{1}{x^{n+2}} f^{(n+1)}(\frac{1}{x}).$$

H2 Differentiation II (4 Punkte)

i) Die Funktion f sei differenzierbar in [a, b] und für alle $x \in [a, b]$ gelte

$$|f(x)| + |f'(x)| \neq 0.$$

Beweise, dass f in [a, b] nur endlich viele Nullstellen hat.

- ii) Zeige die folgenden Ungleichungen mit Hilfe des Mittelwertsatzes:
 - a) $e^{a}(b-a) < e^{b} e^{a} < e^{b}(b-a)$ für a < b,
 - b) $\sqrt{1+x} < 1 + \frac{x}{2}$ für alle x > 0.
- i) Es sei $N_f := \{ x \in [a,b] | f(x) = 0 \}$ die Menge der Nullstellen von f in [a,b]. Wir nehmen an, N_f sei unendlich. Dann gibt es eine Teilmenge $\{ x_n | n \in \mathbb{N} \}$ von N_f mit paarweise verschiedenen Zahlen x_n . Da das Intervall [a,b] kompakt ist, hat die Folge $(x_n)_{n \in \mathbb{N}}$ eine konvergente Teilfolge $(x_{nk})_{k \in \mathbb{N}}$ mit Grenzwert $x_0 \in [a,b]$. Da die x_n paarweise verschieden sind, kann $x_{nk} = x_0$ für höchstens ein $k \in \mathbb{N}$ gelten.

Aus $f(x_n) = 0$ und der Stetigkeit von f folgt auch $f(x_0) = f(\lim_{k \to \infty} x_{nk}) = \lim_{k \to \infty} f(x_{kn}) = 0$. Da f differenzierbar ist, folgt

$$f'(x_0) = \lim_{k \to \infty} \frac{f(x_{nk}) - f(x_0)}{x_{nk} - x_0} = 0.$$

Das ist aber ein Widerspruch zu $|f(x)| + |f'(x)| \neq 0$ für alle $x \in [a, b]!$

ii) a) Anwendung des Mittelwertsatzes auf die Funktion e^x liefert ein $\xi \in (a,b)$ mit

$$\frac{e^b - e^a}{b - a} = e^{\xi}.$$

Mit $e^a < e^{\xi} < e^b$ folgt die Ungleichung.

b) Wegen des Mittelwertsatzes, angewandt auf die Funktion $\sqrt{1+t}$ im Intervall (0,x), gibt es ein $\xi \in (0,x)$ mit

$$\frac{\sqrt{1+x}-1}{x-0} = \frac{1}{2\sqrt{1+\xi}} < \frac{1}{2}.$$

Damit folgt die Behauptung.

H3 Taylor-Polynom (4 Punkte)

- i) Bestimme den minimalen Grad $n \in \mathbb{N}$ des Taylor-Polynoms der Funktion e^{-2x} mit Entwicklungspunkt 1, so dass sich das Taylor-Polynom und die Funktion e^{-2x} auf (0,2) höchstens um 0,1 unterscheiden.
- ii) Beschreibe die Funktion $\frac{1}{1-x}$ durch ihr Taylor-Polynom vom Grad $n \in \mathbb{N}$ mit Entwicklungspunkt 0 und zugehörigem Restglied.
- i) Die Ableitungen der Funktion $g(x) := e^{-2x}$ sind

$$g'(x) = -2 \cdot e^{-2x}, \quad g''(x) = 4 \cdot e^{-2x}, \quad \dots, \quad g^{(n)}(x) = \left((-2)^{n-1}e^{-2x}\right)' = (-2)^n e^{-2x}.$$

Nach der Taylor-Formel drückt das Restglied gerade den Fehler des Taylor-Polynoms zur approximierenden Funktion aus. Daher gilt

$$\left| e^{-2x} - \sum_{k=0}^{n} \frac{g^{(k)}(1)}{k!} (x-1)^{k} \right| \le \left| \frac{g^{(n+1)}(\xi)}{(n+1)!} (x-0)^{n+1} \right| = \frac{2^{n+1} e^{-2\xi}}{(n+1)!} |x-1|^{n+1}$$

$$\le \frac{2^{n+1}}{(n+1)!} e^{-2\cdot 0} |2-1|^{n+1} = \frac{2^{n+1}}{(n+1)!}$$

für alle $x \in (0,2)$. Wir wissen, dass die Folge $\left(\frac{2^{n+1}}{(n+1)!}\right)_{n \in \mathbb{N}}$ eine Nullfolge ist. Für welche $n \in \mathbb{N}$ die Folgenglieder allerdings Werte kleiner oder gleich 0,1 annehmen müssen wir jetzt noch nachrechnen. Dabei stellt sich heraus, dass $\frac{2^{n+1}}{(n+1)!} = \frac{4}{15} > 0,1$ für n=4 und $\frac{2^{n+1}}{(n+1)!} = \frac{4}{45} < 0,1$ für n=5. Somit ist 5 der minimale Grad für welchen wir einen Fehler kleiner als 0,1 garantieren können.

ii) Wir untersuchen zunächst die Ableitungen der Funktion $f(x) := \frac{1}{1-x}$:

$$f'(x) = \frac{1}{(1-x)^2}, \quad f''(x) = \frac{2}{(1-x)^3}, \quad \dots, \quad f^{(n)}(x) = \left(\frac{(n-1)!}{(1-x)^n}\right)' = \frac{n!}{(1-x)^{n+1}}.$$

Somit haben wir $f^{(n)}(0) = n!$ für alle $n \in \mathbb{N}$. Die Darstellung der Funktion f durch ein Taylor-Ploynom vom Grad $n \in \mathbb{N}$ mit Entwicklungspunkt 0 ist demnach

$$\frac{1}{1-x} = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} (x-0)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-0)^{n+1}$$
$$= \sum_{k=0}^{n} x^k + \frac{x^{n+1}}{(1-\xi)^{n+2}}$$

mit einem ξ zwischen 0 und $x \in \mathbb{R}$.

Zusatz Differentiation im Schnee (4 Punkte)

Zur Einstimmung auf ein besinnliches Weihnachtsfest seien hier Funktionen auf $(0, \infty)$ angegeben, die sich ganz leicht aus ein paar Schneeflocken konstruieren lassen:

$$f(*) := *^{(**)}$$
 und $g(*) := (**)*$.

Wir wollen nun diese Schneeflocken-Funktionen genauer analysieren.

- i) Bestimme die Ableitungen dieser Funktionen in der Variable $* \in (0, \infty)$.
- ii) Für welche $* \in (0, \infty)$ ist f größer, kleiner bzw. gleich g?
- iii) Dem Weihnachtsmann sind seine Rentiere entlaufen, nun muss er allein mit Hilfe der Schwerkraft seinen Schlitten bewegen. Er steht im Punkt (0, g(0)) und möchte sich entlang des Graphen von g von seinem Schlitten tragen lassen. Dabei wird der Schlitten an der Stelle * \in $(0, \infty)$ beschleunigt, falls g'(*) < 0, und abgebremst, falls g'(*) > 0. Wie weit wird der Weihnachtsmann beschleunigt?
- i) Die Funktionen f und g lassen sich auch darstellen durch

$$f(*) = *^{(*)} = *^{e^{* \log(*)}} = e^{e^{* \log(*) \cdot \log(*)}},$$

$$g(*) = (*)^* = *^2 = e^{*^2 \log(*)}.$$

Als Ableitungen erhalten wir demnach

$$f'(*) = \left(\frac{1}{*} + \log(*)(\log(*) + 1)\right) \cdot e^{*\log(*)} \cdot e^{e^{*\log(*)} \cdot \log(*)},$$
$$g'(*) = (2 * \log(*) + *) \cdot e^{*^2 \log(*)}.$$

ii) Wir betrachten $\frac{f(*)}{g(*)} = *(*^*-*^2)$. Sei zunächst $* \in (1, \infty)$. So ist $\frac{f(*)}{g(*)} > 1$ genau dann, wenn $*^* - *^2 > 0$. Das ist aber genau dann der Fall, falls $* \in (2, \infty)$. Dagegen für $* \in (1, 2)$ ist $*^* - *^2 < 0$ und damit $\frac{f(*)}{g(*)} < 1$.

Nun sei $* \in (0,1)$. Wir haben $\frac{f(*)}{g(*)} < 1$ genau dann, wenn $*^* - *^2 > 0$. Wegen $* \in (0,1)$ gilt diese Ungleichung, da $*^2 < *^*$.

- In den Sonderfällen *=1 und *=2 sieht man leicht die Gleichheit von f und g. Also gilt auf den Intervallen (0,1) und (1,2) die Ungleichung f < g. Aber auf $(2,\infty)$ haben wir g < f.
- iii) Für alle * \in $(0,\infty)$ ist $e^{*^2\log(*)} > 0$. Es genügt demnach den Ausdruck $2*\log(*) +$ * zu betrachten, um die Ableitung von g auf Vorzeichen zu untersuchen. Durch einfaches Nachrechnen sieht man nun, dass $2*\log(*) + * < 0$ für alle $* \in (0, \frac{1}{\sqrt{e}})$ und $2*\log(*) + * \geq 0$ für alle $* \in [\frac{1}{\sqrt{e}}, \infty)$. Der Weihnachtsmann wird somit bis zur Stelle $* = \frac{1}{\sqrt{e}}$ beschleunigt.