Analysis I für M, LaG, Ph

8. Übung Lösungsvorschlag

Gruppenübung

G1 Überdeckungskompaktheit

Man zeige mithilfe der Heine-Borelschen Überdeckungseigenschaft (s. Satz 6.7 der Vorlesung), dass

- i) (0,1) nicht kompakt ist,
- ii) $\left\{\frac{1}{n} \mid n \in \mathbb{N}\right\} \cup \{0\}$ kompakt ist.
- i) Betrachten wir die Überdeckung $\bigcup_{n\in\mathbb{N}} O_n = (0,1)$ durch die offenen Mengen $O_n := (0,1-\frac{1}{n})$. Angenommen es genügen endlich viele dieser Mengen um (0,1) zu überdecken. Wegen $O_m \subset O_n$ für m < n gibt es dann ein $n_0 \in \mathbb{N}$ mit $(0,1-\frac{1}{n_0}) = O_{n_0} = (0,1)$. (Widerspruch!)
- ii) Sei $\mathcal{U} = \{V_n | n \in \mathbb{N}_0\}$ eine offene Überdeckung der Menge $\{\frac{1}{n} | n \in \mathbb{N}\} \cup \{0\}$, wobei V_n eine Umgebung von $\frac{1}{n}$, $n \in \mathbb{N}$ und V_0 eine Umgebung der Null ist. Da V_0 eine Umgebung von 0 ist, gibt es ein $\varepsilon_0 > 0$, so dass $V_0 = U_{\varepsilon_0}(0)$. Für alle $n \geq N > \frac{1}{\varepsilon_0}$ mit $N 1 \leq \frac{1}{\varepsilon_0}$ liegt $\frac{1}{n}$ bereits in $V_0 = U_{\varepsilon_0}(0)$. Außerhalb der Null-Umgebung V_0 existieren also nur endlich viele Elemente, nämlich gerade $1, \frac{1}{2}, \dots, \frac{1}{N-1}$. Es genügt nun V_0 mit den entsprechenden Umgebungen dieser endlich vielen Punkte außerhalb von V_0 zu vereinigen um damit $\{\frac{1}{n} | n \in \mathbb{N}\} \cup \{0\}$ zu überdecken:

$$\left\{\frac{1}{n} | \ n \in \mathbb{N}\right\} \cup \left\{0\right\} \subset \bigcup_{i=0}^{N-1} V_i.$$

G2 Stetigkeit I

i) Zeige mithilfe einer ε - δ -Abschätzung, daß die folgende Funktion auf $\mathbb R$ stetig ist:

$$f(x) = x^3$$
.

- ii) Jede Funktion $f: \mathbb{Z} \to \mathbb{R}$ ist stetig. Ist diese Behauptung richtig?
- i) Seien $\varepsilon > 0$ und $a \in \mathbb{R}$. Sei |y a| < 1. Damit gilt |y| < |a| + 1. Es folgt

$$|a^{3} - y^{3}| = |a^{2} + ay + y^{2}| \cdot |a - y| \le (|a|^{2} + |a|(|a| + 1) + (|a| + 1)^{2}) |a - y|$$
$$= (3|a|^{2} + 3|a| + 1) |a - y| < \varepsilon$$

falls

$$|a - y| < \delta := \min\{1, \frac{\varepsilon}{3|a|^2 + 3|a| + 1}\}.$$

Somit ist f stetig.

ii) Sei $\varepsilon > 0$ und $k \in \mathbb{Z}$. Wir setzen $\delta := \frac{1}{2}$. Dann sind alle Punkte $y \in \mathbb{Z}$ mit $|k-y| < \delta$ ausschließlich k selbst. Damit gilt nun natürlich die Implikation

$$|k - y| < \delta \Rightarrow |f(k) - f(y)| < \varepsilon$$
.

Jede Funktion $f: \mathbb{Z} \to \mathbb{R}$ ist also stetig.

Alternativer Beweis mit Folgen: Nach einem Satz im Skript (Seite 96) ist f genau dann stetig, wenn für alle in \mathbb{Z} konvergenten Folgen $(x_n)_{n\in\mathbb{N}}$ aus der Definitionsmenge \mathbb{Z} gilt

$$\lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n).$$

Nun, wie sehen konvergente Folgen in $\mathbb Z$ aus? Setzen wir $\varepsilon:=\frac{1}{2}$, so gibt es ein $N\in\mathbb N$, so dass $|\lim_{n\to\infty}x_n-x_n|<\frac{1}{2}$ für alle n. Das bedeutet (in $\mathbb Z!$), dass die Folge $(x_n)_{n\in\mathbb N}$ ab dem N-ten Folgenglied konstant sein muss. Damit erhalten wir die Stetigkeit der Funktion:

$$\lim_{n \to \infty} f(x_n) = f(x_N) = f(\lim_{n \to \infty} x_n).$$

G3 Maximum und Minimum

Besitzen die Funktionen

$$f: \mathbb{R} \to \mathbb{R}: x \mapsto \left\{ \begin{array}{ll} \frac{1}{x^2} & \text{falls } x \neq 0 \\ 0 & \text{falls } x = 0 \end{array} \right.$$

und

$$g: [-e, e] \to \mathbb{R}: x \mapsto \frac{\sqrt{e^{x+e} - 1} - |x|}{x^6 + 17}$$

ein Maximum, ein Minimum oder beides?

Die Funktion f ist immer positiv. Außerdem gilt f(0) = 0. Daher besitzt f an der Stelle Null ein Minimum. Da $\lim_{x\to 0} f(x) = \infty$ gilt, hat f kein Maximum.

Die Funktion g ist offensichtlich stetig (Zusammensetzung stetiger Funktionen!) und auf einem kompakten Intervall definiert. Daher besitzt sie sowohl ein Minimum als auch ein Maximum (s. Folgerung im Skript, Seite 98).

Hausübung

H1 Stetigkeit II (4 Punkte)

i) Zeige mithilfe einer ε - δ -Abschätzung, daß die reelle Funktion $f: \mathbb{R} \to \mathbb{R}$ mit

$$f(x) = \frac{1}{1+x^2}$$

stetig ist.

- ii) Sei $D \subseteq \mathbb{R}$ und $f: D \longrightarrow \mathbb{R}$ stetig in einem Punkte $x \in D$. Zeige, daß es eine Umgebung U von x gibt, so daß $f: U \cap D \longrightarrow \mathbb{R}$ beschränkt ist.
- i) Seien $\varepsilon > 0$ und $a \in \mathbb{R}$. Sei |y a| < 1. Damit gilt |y| < |a| + 1. Es folgt

$$\left| \frac{1}{1+a^2} - \frac{1}{1+y^2} \right| = \frac{|y^2 + 1 - (a^2 + 1)|}{(1+a^2)(1+y^2)}$$

$$= \frac{|a+y||a-y|}{(1+a^2)(1+y^2)}$$

$$\leq \frac{|a|+|y|}{1}|a-y|$$

$$< (2|a|+1)|a-y| < \varepsilon$$

falls

$$|a - y| < \delta := \min\{1, \frac{\varepsilon}{2|a| + 1}\}.$$

Somit ist f stetig.

Etwas eleganter ist die folgende Abschätzung, die ebenfalls die Stetigkeit impliziert:

$$\left| \frac{1}{1+a^2} - \frac{1}{1+y^2} \right| = \frac{|y^2 + 1 - (a^2 + 1)|}{(1+a^2)(1+y^2)}$$

$$= \underbrace{\frac{|a+y||a-y|}{(1+a^2)\underbrace{(1+y^2)}}}_{\geq 1}$$

$$\leq \underbrace{\left(\frac{|a|}{1+a^2} + \frac{|y|}{1+y^2}\right)}_{\leq \frac{1}{2}} |a-y|$$

$$\leq |a-y|$$

Zu einem vorgegebenen ε wählt man hier $\delta := \varepsilon$.

ii) Setze $\varepsilon := 1$. Da f in x stetig ist, gibt es ein $\delta > 0$ mit |f(y) - f(x)| < 1 für $|x - y| < \delta$. Für $y \in (x - \delta, x + \delta) \cap D$ folgt aus der Dreiecksungleichung

$$|f(y)| \le |f(x)| + 1.$$

Mit $U := (x - \delta, x + \delta)$ ist also f beschränkt auf $U \cap D$.

H2 Ein Fixpunktsatz (4 Punkte)

Seien $a, b \in \mathbb{R}$ mit a < b. Sei zudem $f : [a, b] \to \mathbb{R}$ eine stetige Funktion mit $f([a, b]) \subseteq [a, b]$. Zeige, dass f mindestens einen Fixpunkt hat, d.h. es gibt ein $x_0 \in [a, b]$ mit $f(x_0) = x_0$.

Wir definieren uns zunächst eine Hilfsfunktion $g:[a,b] \to \mathbb{R}$, g(x):=f(x)-x. Wegen $f([a,b]) \subseteq [a,b]$ gilt $f(a) \ge a$ und $f(b) \le b$. Also gilt $g(a)=f(a)-a \ge 0$ und $g(b)=f(b)-b \le 0$. Da g zudem stetig ist, folgt aus dem Zwischenwertsatz (s Skript Seite 99) die Eixtenz eines Punktes $x_0 \in [a,b]$ mit $g(x_0)=0$, also mit $f(x_0)=x_0$.

H3 Funktionalgleichung (4 Punkte)

Zeige, dass alle stetigen Funktionen $f:\mathbb{R}\to\mathbb{R}$, die die Funktionalgleichung

$$f(x+y) = f(x) + f(y)$$

erfüllen, linear sind.

Wir verwenden eine übliche Beweismethode in der Mathematik: Man zeigt die Aussage zunächst für die leichten Fälle und arbeitet sich dann mit dem Erreichten sukzessive zum allgemeinen Beweis vor. Also los...

1) **Fall** $\mathbb{N} \cup \{0\}$: Sei $x \in \mathbb{R}$. Wir haben

$$f(0) = f(0+0) = f(0) + f(0) = 2f(0) \Rightarrow f(0 \cdot x) = f(0) = 0 = 0 \cdot f(x) \qquad und$$
$$f(1 \cdot x) = f(x) = 1 \cdot f(x).$$

Wir nehmen an für $n \in \mathbb{N}$ gelte $f(n \cdot x) = n \cdot f(n)$, dann erhalten wir

$$f((n+1) \cdot x) = f(n \cdot x) + f(x) = n \cdot f(x) + f(x) = (n+1) \cdot f(x).$$

Induktiv ist der einfache Fall bewiesen.

2) Fall \mathbb{Z} : Sei $x \in \mathbb{R}$ und $n \in \mathbb{N}$. Wegen

$$0 = f(0) = f(x - x) = f(x) + f(-x) \Rightarrow f(-x) = -f(x).$$

bekommen wir

$$f((-n) \cdot x) = -f(n \cdot x) = -n \cdot f(x).$$

3) Fall \mathbb{Q} : Sei $n \in \mathbb{N}$ und $m \in \mathbb{Z}$. Damit erhalten wir

$$n \cdot f(\frac{m}{n} \cdot x) = f(m \cdot x) = m \cdot f(x) \Rightarrow f(\frac{m}{n} \cdot x) = \frac{m}{n} \cdot f(x).$$

4) Fall \mathbb{R} : Sei nun $\lambda \in \mathbb{R}$. Dann gibt es eine Folge $(q_n)_{n \in \mathbb{Q}}$ rationaler Zahlen, so dass $\lim_{n \to \infty} q_n = \lambda$. Dann gilt wegen der Stetigkeit der Funktion f (s. Satz im Skript, Seite 96)

$$f(\lambda \cdot x) = f(\lim_{n \to \infty} q_n \cdot x) = (Stetigkeit!) \lim_{n \to \infty} f(q_n \cdot x) = \lim_{n \to \infty} q_n \cdot f(x) = \lambda \cdot f(x).$$

Nebenbei: Mit der Eigenschaft $f(\lambda \cdot x) = \lambda \cdot f(x)$ (Homogenität) können wir **alle** linearen Funktionen $f : \mathbb{R} \to \mathbb{R}$ klassifizieren. Denn es gilt

$$f(x) = f(x \cdot 1) = x \cdot f(1) = c \cdot x$$

mit $c := f(1) \in \mathbb{R}$ für alle $x \in \mathbb{R}$. Die linearen Funktionen $f : \mathbb{R} \to \mathbb{R}$ haben also gerade die Gestalt $f(x) = c \cdot x$ für eine Konstante $c \in \mathbb{R}$. Man sieht auch leicht, dass solche lineare Funktionen immer stetig sind.