Analysis I für M, LaG, Ph

3. Übung Lösungsvorschlag

Gruppenübung

G1 Supremum und Infimum von Mengen

Bestimme Suprema, Infima, Maxima und Minima der folgenden Teilmengen von \mathbb{R} , falls diese existieren.

- i) $A := \{\frac{1}{x} \frac{1}{y} | x, y \in \mathbb{R}, x, y \ge 1\},\$
- ii) $B := \left\{ \frac{1}{n+1} + \frac{1 + (-1)^n}{2n} | n \in \mathbb{N} \right\},\,$
- iii) $C := \emptyset$
- i) Für alle $x,y\geq 1$ gilt $-1<\frac{1}{x}-\frac{1}{y}<1$ $(x=1\ \mathrm{und}\ y>1\ \mathrm{oder}\ x>1\ \mathrm{und}\ y=1).$ Daher ist die Menge A von unten und von oben beschränkt. Nach Vollständigkeitsaxiom existiert ein Supremum und ein Infimum. Wir beweisen jetzt, dass $\sup A=1$ ist. Es ist eine obere Schranke. Sei $0<\varepsilon\leq 1$ gegeben. Wir nehmen x=1 und $y>\frac{1}{\varepsilon}.$ Dann ist $\frac{1}{x}-\frac{1}{y}=1-\frac{1}{y}>1-\varepsilon.$ (Wenn $\varepsilon>1$ ist, nehmen wir x=y=1). Daher ist $\sup A=1$. Analog beweisen wir, dass $\inf A=-1$ ist. (Direkt oder beweisen, dass $\sup A=-\inf(-A)$ ist. Da $1,-1\not\in A$ sind, sind sie kein Maximum und kein Minimum. Wir beweisen indirekt, dass $1\not\in A$ ist. Für -1 geht der Beweis analog. Angenommen, es gibt $x,y\geq 1$ mit $\frac{1}{x}-\frac{1}{y}=1$. Dann gilt $\frac{y-x}{xy}=1\Leftrightarrow y=x(y+1)$. Da $x\geq 1$ und $1+y\geq 0$ ist, ist $y\geq 1+y\Leftrightarrow 0\geq 1$. Widerspruch.
- i) Für $n \in sei$

$$a_n := \frac{1}{n+1} + \frac{1 + (-1)^n}{2n}.$$

Dann sind $a_n > 0$ für jedes $n \in \mathbb{N}$, und B ist von unten beschränkt. Wir zeigen, dass inf B = 0 ist. Sei $\varepsilon > 0$ gegeben. Wenn $n > 2/\varepsilon$ ist, dann ist

$$a_n \le \frac{1}{n} + \frac{2}{2n} = \frac{2}{n} < \varepsilon,$$

also ist inf B = 0. Da $0 \notin B$ liegt, hat B kein Minimum.

Man bekommt $a_1 = 1/2$, $a_2 = 5/6$, $a_3 = 1/4$. Für $n \ge 4$ haben wir die Abschätzung

$$a_n < 1/5 + 2/8 < 1/2$$
.

Daraus folgt, dass 5/6 das Maximum und Supremum von B ist.

iii) Die Menge C enthält keine Elemente und damit auch kein Minimum und Maximum. Auch existieren Suprema und Minima nicht. Denn bzgl. C ist jedes $x \in \mathbb{R}$ sowohl eine obere als auch untere Schranke. Da \mathbb{R} nach oben und unten unbeschränkt ist, gibt es also keine kleinste obere bzw. größte untere Schranke für C. Anschaulich wären also sup $C = -\infty$ und inf $C = \infty$.

G2 Mengenoperationen und (Ur-)Bilder von Funktionen

Es seien X, Y beliebige Mengen und $f: X \to Y$ eine Abbildung. Weiter seien $A, A' \subseteq X$ und $B, B' \subseteq Y$. Man zeige:

i)
$$f(A \cup A') = f(A) \cup f(A')$$
, $f^{-1}(B \cup B') = f^{-1}(B) \cup f^{-1}(B')$

ii)
$$f(A \cap A') \subseteq f(A) \cap f(A')$$
, $f^{-1}(B \cap B') = f^{-1}(B) \cap f^{-1}(B')$.

Gilt sogar stets $f(A \cap A') = f(A) \cap f(A')$?

- i) $y \in f(A \cup B) \Leftrightarrow \exists x \in A \cup B : y = f(x) \Leftrightarrow (\exists x \in A : y = f(x)) \text{ oder } (\exists z \in B \ (z \text{ ist nicht unbedingt gleich } x) : y = f(z)) \Leftrightarrow y \in f(A) \cup \in f(B).$ $x \in f^{-1}(A \cup B) \Leftrightarrow \exists y \in A \cup B : y = f(x) \Leftrightarrow \exists y \in A : y = f(x) \text{ oder } \exists z \in (z \text{ ist nicht unbedigt gleich } y) : z = f(x) \Leftrightarrow x \in f^{-1}(A) \cup f^{-1}(B).$
- ii) $y \in f(A \cap B) \Leftrightarrow \exists x \in A \cap B : y = f(x) \Leftrightarrow \exists x : y = f(x)$, wobei $x \in A$ und $x \in B \Rightarrow$ (aufgrund dieser Implikation können wir i.a. keine Gleichheit der Mengen erwarten!) $\exists x \in A : y = f(x)$ und $\exists z \in B(z = x) : y = f(z) \Leftrightarrow y \in f(A) \cap f(B)$. Falls f injektiv ist, folgt aus $y \in f(A \cap B) \Leftrightarrow \exists x \in A : y = f(x)$ und $\exists z \in B : y = f(z)$, dass x = z sein muss. $x \in f^{-1}(A \cap B) \Leftrightarrow \exists y \in A \cap B : y = f(x) \Leftrightarrow \exists y \in A : y = f(x)$ und $\exists z \in B \ (z = y) : z = f(x) \Leftrightarrow x \in f^{-1}(A) \cap f^{-1}(B)$. $x \in f^{-1}(A \cap B) \Leftrightarrow \exists y \in A \cup B : y = f(x) \Rightarrow \exists y \in A : y = f(x)$ und $\exists z \in B \ (z = y) : z = f(x) \Leftrightarrow x \in f^{-1}(A) \cap f^{-1}(B)$. Da nach Definition einer Funktion f(x) eindeutig ist, d.h. aus f(x) = z und f(x) = y unbedingt z = y folgt, folgt aus $x \in f^{-1}(A) \cap f^{-1}(B)$, dass $x \in f^{-1}(A \cap B)$ ist. Sei $f(x) := x^2$ und X = Y = R. Setzen wir A = (-1,0) und A' = (0,1), so gilt

$$\emptyset = f(\emptyset) = f(A \cap A') \subseteq f(A) \cap f(A') = (0, 1).$$

Allerdings gilt für injektive Funktionen sogar immer die Gleichheit beider Mengen.

G3 Supremum und Infimum

Für die beiden nichtleeren Mengen $A, B \subset \mathbb{R}$ gelte

$$a < b$$
 für alle $a \in A$ und $b \in B$.

Begründe die Existenz von $s := \sup A$ und $t := \inf B$ und zeige

- i) $\sup A \leq \inf B$. (Tipp: Widerspruchsbeweis)
- ii) $\sup A = \inf B \iff \text{ für alle } \varepsilon > 0 \text{ gibt es } a \in A \text{ und } b \in B \text{ mit } b a < \varepsilon.$ (Tipp für die Rückrichtung: Zeige zunächst, dass t obere Schranke von A ist. Zeige anschließend $\sup A = t$.)

Jedes Element der nichtleeren Menge A ist untere Schranke von B und jedes Element der Menge B ist obere Schranke von A. Somit existieren Infimum und Supremum nach dem Vollständigkeitsaxiom.

$$s = \sup A \Leftrightarrow s \text{ obere Schranke und } \forall \varepsilon > 0 \exists x \in A \text{ mit } x > s - \varepsilon.$$

 $t = \inf B \Leftrightarrow t \text{ untere Schranke und } \forall \varepsilon > 0 \exists x \in B \text{ mit } x < t + \varepsilon.$

- i) Wir gehen indirekt vor und nehmen an $\sup A > \inf B$. Dann gilt mit $\varepsilon := \sup A \inf B$, dass ein $b \in B$ existiert mit $b < \inf B + \varepsilon \sup A$. Aus dem gleichen Argument, angewandt auf das Supremum für $\tilde{\varepsilon} := \sup A b$, existiert ein $a \in A$ mit $a > \sup A \tilde{\varepsilon} = b$. Widerspruch!
- ii) " \Rightarrow " Sei t = s und $\varepsilon > 0$. Es existiert ein $a \in A$ mit $a > s \frac{\varepsilon}{2}$ und ein $b \in B$ mit $b < t + \frac{\varepsilon}{2}$. Also gilt

$$b-a<(t+rac{arepsilon}{2})-(s-rac{arepsilon}{2})=arepsilon.$$

" \Leftarrow " Wir zeigen: Wenn die rechte Seite der Äquivalenz erfüllt ist, dann ist $t = \sup A$.

t ist obere Schranke von A: Angenommen es gibt $a \in A$ mit a > t. Mit $\varepsilon = a - t$ gibt es dann ein $b \in B$ mit b < a. Widerspruch.

Sei nun $\varepsilon > 0$. Dann existiert $a \in A$ und $b \in B$ mit $b - a < \varepsilon$. Für dieses a gilt auch $t - \varepsilon \le b - \varepsilon < a$. Somit ist die Zahl t ein Supremum von A, was t = s ergibt.

Hausübung

H1 Funktionen (4 Punkte)

Es seien X,Y beliebige Mengen und $f:X\to Y$ eine Abbildung. Weiter seien $A\subseteq X$ und $B\subseteq Y$. Man zeige

$$f(X \setminus A) \supseteq f(X) \setminus f(A), \qquad f^{-1}(Y \setminus B) = f^{-1}(Y) \setminus f^{-1}(B).$$

 $y \in f(X) \setminus f(A) \Leftrightarrow (\exists x \in X) \ f(x) = y \ \text{und} \ (\forall a \in A) \ f(a) \neq y \Rightarrow (\exists x \in X \setminus A) \ f(x) = y \Leftrightarrow y \in f(X \setminus A).$ (Auch hier gilt für injektive Funktionen sogar immer die Gleichheit beider Mengen.)

$$x \in f^{-1}(Y \backslash B) \Leftrightarrow f(x) \in Y \backslash B \Leftrightarrow f(x) \in Y \text{ und } f(x) \notin B \Leftrightarrow x \in f^{-1}(Y) \backslash f^{-1}(B).$$

H2 Supremum und Addition (4 Punkte)

i) Gegeben seien nichtleere beschränkte Mengen $A, B \subseteq \mathbb{R}$. Wir definieren die Summe dieser Mengen elementweise:

$$A + B := \{ a + b | a \in A, b \in B \}.$$

Zeige:

$$\sup(A+B) = \sup A + \sup B.$$

ii) Seien $f, g: \mathbb{R} \to \mathbb{R}$ zwei Funktionen mit beschränkten Bildern $f(\mathbb{R})$ und $g(\mathbb{R})$. Das Supremum einer Funktion ist das Supremum ihres Bildes:

$$\sup f := \sup f(\mathbb{R}).$$

Die Summe von diesen Funktionen wird punktweise definiert und bildet eine neue Funktion $(f+g): \mathbb{R} \to \mathbb{R}$, d.h.:

$$(f+q)(x) := f(x) + q(x)$$
 für alle $x \in \mathbb{R}$.

Zeige

$$\sup(f+g) \le \sup f + \sup g.$$

Warum erhält man i.a. in der Teilaufgabe ii) keine Gleichheit? Gebe ein Beispiel an, in dem eine echte Ungleichheit vorliegt. Worin liegt der Unterschied zur Teilaufgabe i)?

- i) Seien $\alpha := \sup A$ und $\beta := \sup B$. Wir beweisen nun $\alpha + \beta = \sup(A + B)$. Weil für alle $a \in A$ und $b \in B$ die Ungleichungen $a \le \alpha$ und $b \le \beta$ gelten und damit $a + b \le \alpha + \beta$, ist $\alpha + \beta$ eine obere Schranke der Menge A + B. Sei $\varepsilon > 0$ beliebig gegeben. Dann existieren $x \in A$ und $y \in B$, so dass $x > \alpha \frac{\varepsilon}{2}$ und $y > \beta \frac{\varepsilon}{2}$ gilt. Damit haben wir $x + y > \alpha \frac{\varepsilon}{2} + \beta \frac{\varepsilon}{2} = \alpha + \beta \varepsilon$. Also ist $\alpha + \beta$ das Supremum der Menge A + B.
- ii) Seien $F := \sup f$ und $G := \sup g$. Es ist zu zeigen, dass F + G eine obere Schranke des Bildes $(f + g)(\mathbb{R})$ ist. Sei also $x \in \mathbb{R}$. So gilt

$$(f+q)(x) = f(x) + q(x) < F + G.$$

damit ist F + G eine obere Schranke.

iii) Als Beispiel könnte man die Funktionen $f,g: \mathbb{R} \to \mathbb{R}$ mit f(x) := x, g(x) := -x für alle $x \in (-1,1)$ und f(x) := g(x) := 0 für alle $x \in \mathbb{R} \setminus (-1,1)$. Wir bekommen so

$$0 = \sup(f + g) \le \sup f + \sup g = 1 + 1 = 2.$$

Der Unterschied zur Teilaufgabe i) liegt darin, dass die Elemente $a \in A, b \in B$ unabhängig voneinander gewählt werden konnten. Die Summe der Funktionen f, g wurde aber so definert, dass das gleiche Argument $x \in \mathbb{R}$ auf f und g angewandt wird.

H3 Supremum (4 Punkte)

Die Folge $(x_n)_{n\in\mathbb{N}}$ werde rekursiv definiert durch $x_1:=\sqrt{2}$ und

$$x_{n+1} := \sqrt{2 + x_n}, \qquad n \in \mathbb{N},$$

und sei $M := \{ x_n | n \in \mathbb{N} \}$. Zeige, dass 2 eine obere Schranke von M ist, und bestimme das Supremum dieser Menge.

Wir beweisen die Beschränktheit von M durch 2 mit vollständiger Induktion.

Sei n=1. Wir erhalten $x_1=\sqrt{2}\leq 2$.

Nun nehmen wir an, dass $x_n \leq 2$ für ein $n \in \mathbb{N}$ sei. Dann gilt

$$x_{n+1} = \sqrt{2 + x_n} \le \sqrt{2 + 2} = 2.$$

Damit ist also 2 eine obere Schranke von M. Damit liegt das Supremum s := M im Intervall $[\sqrt{2}, 2]$. (Weil $x_1 = \sqrt{2}$ und 2 obere Schranke von M)

Angenommen $\sqrt{2} \le s < 2$ und sei $0 < \varepsilon := 2 - s$. Nun gibt es ein Element x_{n_0} der Menge M mit $x_{n_0} > s - \varepsilon = 2s - 2$. Es gilt daher

$$x_{n_0+1} = \sqrt{2 + x_{n_0}} > \sqrt{2 + 2s - 2} = \sqrt{2s} > \sqrt{s^2} = s.$$

Damit kann s kein Supremum sein (Widerspruch!). Wir haben also gezeigt, das 2 sogar die kleinste obere Schranke ist, d.h.

$$s=2.$$

Alternativ: Wir können s=2 noch auf eine andere Weise beweisen. Hierfür betrachen wir zunächst das Polynom zweiten Grades $\tilde{s}^2 - \tilde{s} - 2 = (\tilde{s} - 2)(\tilde{s} + 1)$. Dieses ist negativ für $\tilde{s} \in (-1,2)$. Nun nehmen wir für das Supremum s der Menge M wieder an $\sqrt{2} \leq s < 2$. Mit $x_{n+1} = \sqrt{2 + x_n}$ erhalten wir

$$x_n = x_{n+1}^2 - 2 < s^2 - 2 < s$$
.

Die letzte Ungleichung folgt aus dem Verhalten des Polynoms $\tilde{s}^2 - \tilde{s} - 2 = (\tilde{s} - 2)(\tilde{s} + 1)$ (s. oben). Alle Elemente aus M sind also echt kleiner $s^2 - 2$, d.h. $s^2 - 2$ ist obere Schranke der Menge M. Somit kann s nicht das Supremum von M sein (Widerspruch!). Also ist wieder s = 2.