Fachbereich Mathematik

Repetition Sheet Analysis I (engl.)
 Winter Term 2009/10

(R.1)

Compute the supremum, infimum, maximum, minimum where they exist of the following sets

$$
A=\left\{\frac{1}{x^{2}+1} / x \in \mathbb{R}\right\}, \quad B=\left\{(-1)^{n} \cdot \frac{n}{n+1} / n \in \mathbb{N}\right\}
$$

(R.2)

Which of the following sequences are convergent? If a sequence is not convergent find the lim sup, liminf.

$$
a_{n}=\frac{n^{8}}{1+5^{n}}, \quad b_{n}=\max \left\{\frac{1}{n},(-1)^{n}\right\}, \quad c_{0}=1, c_{n+1}=\frac{c_{n}}{1+c_{n}} \quad n \in \mathbb{N} .
$$

(R.3)

Which of the following series are convergent?

$$
\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}, \quad \sum_{n=1}^{\infty} \frac{3^{n}}{n!}, \quad \sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n^{2}-n}, \quad \sum_{n=1}^{\infty}(-1)^{n} \log \left(\frac{1}{n}\right)
$$

(R.4)

Let a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ and assume that there is some $r>0$ s.t. the series $\sum_{n=0}^{\infty} a_{n} \cdot r^{n}$ is convergent but not absolutely convergent. Prove that the radius of convergence of the power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ equals to r.

(R.5)

(a) Decide whether the following functions are continuous.
(i) $f:[0, \infty) \rightarrow \mathbb{R}, f(x)=\sqrt{x}$,
(ii) $g: \mathbb{R} \rightarrow \mathbb{R}, g(x)=\frac{\sqrt{\exp \left(3 x^{2}-7 x\right) \cdot\left(x^{2}+1\right)}}{x^{4}+3}$.
(b) For each point x on the surface of the Earth we denote by $T(x)$ the temperature at x at a given (fixed) point in time. We assume that T is a continuous function in x. For every point x on the surface of the Earth we define the antipodal point of x as the (unique) point on the surface of the earth which lies on the line which passes through x and the center of the earth. We denote the antipodal point of x by x_{A}. You may take for granted that the function $x \mapsto x_{A}$ is continuous. Prove that there exists a point x such that $T(x)=T\left(x_{A}\right)$ i.e., assuming that the function of the temperature is continuous there is a point on the surface of earth which has the same temperature with its antipodal point.

(R.6)

Prove that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x):= \begin{cases}\frac{1}{q}, & x=\frac{p}{q} \in \mathbb{Q} \text { with } \frac{p}{q} \text { irreducible and } q>0, \\ 0, & x \in \mathbb{R} \backslash \mathbb{Q}\end{cases}
$$

is continuous exactly at all irrational points x_{0}. ${ }^{1}$

(R.7)

1. Let $D \subseteq \mathbb{R}$ be an open set and $f: D \rightarrow \mathbb{R}$ be a function which is continuous at $x_{0} \in D$ and differentiable on $D \backslash\left\{x_{0}\right\}$. Use the mean value theorem to prove that if $\lim _{x \rightarrow x_{0}} f^{\prime}(x)=a$ then then function f is differentiable at x_{0} and $f^{\prime}\left(x_{0}\right)=a$. Is it true that if the limit $\lim _{x \rightarrow x_{0}} f^{\prime}(x)$ does not exist then f is not differentiable at x_{0} ?
2. Prove that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2} \cdot \cos \left(\frac{1}{x}\right)$ for $x \neq 0$ and $f(0)=0$ is differentiable at all $x \in \mathbb{R}$.

(R.8)

Let the function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is defined by $f(x)=\frac{\sin \left(x^{2}\right)}{x}$ if $x \neq 0$ and $f(0)=0$. Prove that f is infinite many times differentiable and compute the values $f^{(n)}(0)$ for all $n \in \mathbb{N}$.

(R.9)

Prove that the condition of monotonicity is essential in the Theorem of Dini (see T14.2) i.e., find a compact set $K \subseteq \mathbb{R}$ and continuous functions $f_{n}: K \rightarrow \mathbb{R}, n \in \mathbb{N}$, such that the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ is pointwise convergent to some continuous function f but not uniformly convergent to f.
(R.10)

Give the example of an integrable function $f:[-1,1] \rightarrow \mathbb{R}$ for which the function $F(x)=\int_{-1}^{x} f(t) d t, x \in[-1,1]$ is not differentiable.

[^0]
[^0]: ${ }^{1}$ The term " $\frac{p}{q}$ is irreducible" means that the only common divisor of the integers p and q is 1 . This is to make the function f well defined. For example for $x_{0}=\frac{3}{5}=\frac{6}{10}=\frac{12}{20}$ the assigned value is $\frac{1}{5}$ i.e, $f\left(x_{0}\right)=\frac{1}{5}$. Without the rule " $\frac{p}{q}$ is irreducible" the numbers $10,20, \ldots$ could also be the values of $f\left(x_{0}\right)$ and so f would not be well defined. The condition " $q>0$ " is also needed to make f well defined. For example $-\frac{2}{3}=\frac{-2}{3}=\frac{2}{-3}$. Without the rule that the denominator must be positive the numbers $\frac{1}{3}$ and $\frac{1}{-3}$ could both be the values of $f\left(-\frac{2}{3}\right)$. But with this rule we know that $f\left(-\frac{2}{3}\right)=f\left(\frac{-2}{3}\right)=\frac{1}{3}$.

