Prof. Dr. W. Trebels
Dr. V. Gregoriades

14th Homework Sheet Analysis I (engl.) Winter Term 2009/10

(H14.1)

1. Define $f_{n}(x)=n \sin \left(\frac{x}{n}\right), x \in \mathbb{R}, n \in \mathbb{N}$ and $g_{n}=\frac{1}{n} \sin (n x), x \in \mathbb{R}, n \in \mathbb{N}$. Prove that the sequences $\left(f_{n}\right)_{n \in \mathbb{N}}$ and $\left(g_{n}\right)_{n \in \mathbb{N}}$ converge pointwise to some differentiable functions f and g respectively. Check also if $\left(f_{n}^{\prime}\right)_{n \in \mathbb{N}}$ converges pointwise to f^{\prime} and if $\left(g_{n}^{\prime}\right)_{n \in \mathbb{N}}$ converges pointwise to g^{\prime}.
2. Suppose that $\left(f_{n}\right)_{n \in \mathbb{N}}$ is a sequence of continuous functions from \mathbb{R} to \mathbb{R} with $\left\|f_{n}\right\|_{\infty} \leq$ 1 for all $n \in \mathbb{N}$. Prove that for all $x \in \mathbb{R}$ the series $\sum_{n=1}^{\infty} \frac{1}{2^{n}} \cdot f_{n}(x)$ converges. Prove also that the function $f(x)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \cdot f_{n}(x), x \in \mathbb{R}$ is continuous.

(H14.2)

1. For all $n \in \mathbb{N}$ define $f_{n}(x)=n x\left(1-x^{2}\right)^{n}, x \in[0,1]$. Prove that the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ is pointwise convergent and compute its limit. Is $\left(f_{n}\right)_{n \in \mathbb{N}}$ uniformly convergent?
2. Define the sequence of functions $\left(g_{n}\right)_{n \in \mathbb{N}}$ inductively as follows: $g_{1}(x)=x, x \in[0,1]$ and $g_{n+1}(x)=\sqrt{\left|g_{n}(x)\right|}$ for all $x \in[0,1]$. Prove that the sequence $\left(g_{n}\right)_{n \in \mathbb{N}}$ is pointwise convergent to some $g:[0,1] \rightarrow \mathbb{R}$ and that the sequence $\left(g_{n}\right)_{n \in \mathbb{N}}$ restricted on $\left[\frac{1}{2}, 1\right]$ is uniformly convergent to the restriction of g on $\left[\frac{1}{2}, 1\right]$. Is $\left(g_{n}\right)_{n \in \mathbb{N}}$ uniformly convergent on the whole interval $[0,1]$?
Hint. Prove using induction that for all $n \in \mathbb{N}$ we have that $g_{n+1}(x)=x^{\left(1 / 2^{n}\right)}$, $x \in[0,1]$.

(H14.3)

Let the function $f(x)=\frac{1}{x^{2}+1}, x \in \mathbb{R}$.

1. Prove that for all $n \in \mathbb{N}$ and all $x \in \mathbb{R}$ there exists the $n^{\text {th }}$ derive $f^{(n)}(x)$ of f at x. Hint. Prove that for all $n \in \mathbb{N}$ there exists a polynomial $P_{n}(x)$ such that $f^{(n)}(x)=$ $\frac{P_{n}(x)}{\left(x^{2}+1\right)^{2^{n}}}$.
2. For all $n \in \mathbb{N}$ compute the value of the $n^{\text {th }}$ derive $f^{(n)}(0)$ of f at 0 .

Hint. Represent f as power series near 0 .

