Fachbereich Mathematik Prof. Dr. W. Trebels Dr. V. Gregoriades

2010-01-28

13th Homework Sheet Analysis I (engl.) Winter Term 2009/10

(H13.1)

Let $f : \mathbb{R} \to \mathbb{R}$ be bijective, differentiable with inverse function g. We have the following information on f:

- (1) f(0) = 1 and f'(0) = 2.
- (2) The derivative of f is bounded: $1 \le f'(x) \le 3$ for all $x \in \mathbb{R}$.

Answer the following questions:

- (i) Is g everywhere differentiable? For which x does one know the values of g(x) and g'(x)?
- (ii) Is g' bounded?
- (iii) Is f monotone?
- (iv) Give an estimate (from below and above) for f(10) via the mean value theorem.
- (v) Give an estimate (from below and above) for g(10).

(H13.2)

1. Compute the limits

$$\lim_{x \to 0^+} (1+x)^{1/x}, \quad \lim_{x \to 0^+} x^x.$$

Let f: (0,1) → ℝ be a convex function and assume that there exists some x₀ ∈ (0,1) s.t. f(x) ≤ f(x₀) for all x ∈ (0,1). Prove that f is constant.
Hint. If x < x₀ < y then x₀ = (1 − λ)x + λy for some λ ∈ (0,1).

(H13.3)

Consider the functions $f(x) = \log(1+x), x > -1$ and $g(x) = \cos(x), x \in \mathbb{R}$.

- 1. Find the Taylor Polynomials $T_n f$, $T_n g$ near 0 for all $n \in \mathbb{N}$.
- 2. Give an estimate for the remainders $R_n f(x, 0)$, $R_n g(x, 0)$ for all $x \in (0, 1)$ and for all $n \in \mathbb{N}$.
- 3. For x = 0 determine some $n_0 \in \mathbb{N}$ for which we have that $|R_{n_0}g(1,0)| \leq 10^{-3}$.