13th Homework Sheet Analysis I (engl.)
 Winter Term 2009/10

(H13.1)

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be bijective, differentiable with inverse function g. We have the following information on f :
(1) $f(0)=1$ and $f^{\prime}(0)=2$.
(2) The derivative of f is bounded: $1 \leq f^{\prime}(x) \leq 3$ for all $x \in \mathbb{R}$.

Answer the following questions:
(i) Is g everywhere differentiable? For which x does one know the values of $g(x)$ and $g^{\prime}(x)$?
(ii) Is g^{\prime} bounded?
(iii) Is f monotone?
(iv) Give an estimate (from below and above) for $f(10)$ via the mean value theorem.
(v) Give an estimate (from below and above) for $g(10)$.

(H13.2)

1. Compute the limits

$$
\lim _{x \rightarrow 0^{+}}(1+x)^{1 / x}, \quad \lim _{x \rightarrow 0^{+}} x^{x} .
$$

2. Let $f:(0,1) \rightarrow \mathbb{R}$ be a convex function and assume that there exists some $x_{0} \in(0,1)$ s.t. $f(x) \leq f\left(x_{0}\right)$ for all $x \in(0,1)$. Prove that f is constant.

Hint. If $x<x_{0}<y$ then $x_{0}=(1-\lambda) x+\lambda y$ for some $\lambda \in(0,1)$.

(H13.3)

Consider the functions $f(x)=\log (1+x), x>-1$ and $g(x)=\cos (x), x \in \mathbb{R}$.

1. Find the Taylor Polynomials $T_{n} f, T_{n} g$ near 0 for all $n \in \mathbb{N}$.
2. Give an estimate for the remainders $R_{n} f(x, 0), R_{n} g(x, 0)$ for all $x \in(0,1)$ and for all $n \in \mathbb{N}$.
3. For $x=0$ determine some $n_{0} \in \mathbb{N}$ for which we have that $\left|R_{n_{0}} g(1,0)\right| \leq 10^{-3}$.
