Fachbereich Mathematik
Prof. Dr. W. Trebels
Dr. V. Gregoriades

12th Homework Sheet Analysis I (engl.)
 Winter Term 2009/10

(H12.1)
Suppose that we are given functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$. Are the following statements true or false?

1. If f is differentiable at 0 then f is continuous at 0 .
2. If f is continuous at 1 then f is differentiable at 1 .
3. If the function $h(x)=(f(x))^{2}, x \in \mathbb{R}$ is differentiable then f is differentiable.
4. If the function $f+g$ is differentiable and f is continuous then g is differentiable.

(H12.2)

1. Find all $x \in \mathbb{R}$ for which the function f given below is differentiable at x and in this case compute the derivative $f^{\prime}(x)$. Do the same for g. Also examine whether the functions f, g are Lipschitz.

$$
f(x)=|x|, x \in \mathbb{R}, \quad g(x)=\cos \left(2 \pi x^{3}\right), x \in \mathbb{R}
$$

2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function. Assume that the function f^{\prime} is also differentiable and that $f^{\prime \prime}(x)=0$ for all $x \in \mathbb{R}$. Prove that f is a polynomial of degree at most 1. (Hint. You may use Corollary 2.5 Chap. 4).

(H12.3)

1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function which is differentiable on (a, b). Prove that
(a) If $f^{\prime}\left(x_{0}\right)=0$ for an $x_{0} \in(a, b)$, then x_{0} is
(i) a local minimum, if $f^{\prime} \leq 0$ on $\left(a, x_{0}\right)$ and $f^{\prime} \geq 0$ on $\left(x_{0}, b\right)$;
(ii) a local maximum, if $f^{\prime} \geq 0$ on (a, x_{0}) and $f^{\prime} \leq 0$ on $\left(x_{0}, b\right)$.
(b) If $\left|f^{\prime}(x)\right| \leq L$ for all $x \in[a, b]$ we have that

$$
|f(x)-f(y)| \leq L \cdot|x-y|
$$

for all $x, y \in[a, b]$. (These are (c) and (d) of Corollary 2.5 Chap. 4).
2. Define the function $f: \mathbb{R} \rightarrow \mathbb{R}: f(x)= \begin{cases}x & \text { if } x \in \mathbb{Q}, \\ 0 & \text { if } x \notin \mathbb{Q} .\end{cases}$

Prove that f is not differentiable at 0 .

