Fachbereich Mathematik Prof. Dr. W. Trebels Dr. V. Gregoriades

2009-12-03

8th Homework Sheet Analysis I (engl.) Winter Term 2009/10

(H8.1)

1. Find the interior and the closure of the following sets:

$$(0,\sqrt{3}], (-\infty,0), \mathbb{R} \setminus \mathbb{Q}, \emptyset.$$

- 2. Which of the previous sets are open?
- 3. Find a simpler form for the following sets:

$$\bigcup_{n\in\mathbb{N}} [2, (1+\frac{1}{n})^n], \quad \bigcup_{n\in\mathbb{N}} [-n, -\frac{1}{n}), \quad \bigcap_{n\in\mathbb{N}} (-\frac{1}{n}, \frac{1}{n}] \quad \bigcap_{n\in\mathbb{N}} (-\infty, -n).$$

(H8.2)

1. Prove Theorem 2.6 Chap. 3 i.e.,

(a) The sets \emptyset , \mathbb{R}^n are closed subsets of \mathbb{R}^n .

(b) If F_i is a closed subset of \mathbb{R}^n for all $i \in I$ then the intersection $\bigcap_{i \in I} F_i$ is a closed subset of \mathbb{R}^n .

(c) If F_1, \ldots, F_m are closed subsets of \mathbb{R}^n then the union $F_1 \cup \ldots \cup F_m$ is a closed subset of \mathbb{R}^n .

- 2. Find open sets of real numbers $V_0, V_1, \ldots, V_n, \ldots$ for which the intersection $\bigcap_{n \in \mathbb{N}} V_n$ is not an open set.
- 3. Find closed sets of real numbers $F_0, F_1, \ldots, F_n, \ldots$ for which the union $\bigcup_{n \in \mathbb{N}} F_n$ is not a closed set.

(H8.3)

Prove that Theorem 2.15 Chap. 3 is not true if we drop the hypothesis that $\lim_{j\to\infty} \operatorname{diam}(A_j) = 0$ i.e., find sets or real numbers A_1, \ldots, A_j, \ldots such that

$$A_0 \supseteq A_1 \supseteq \ldots \supseteq A_j \supseteq \ldots,$$

the set A_j is closed for all $j \in \mathbb{N}$ and the intersection $\bigcap_{j \in \mathbb{N}} A_j$ is the empty set. *Hint.* Look for sets A_j for which diam $(A_j) = \infty$ for all $j \in \mathbb{N}$.