Fachbereich Mathematik
Prof. Dr. W. Trebels
Dr. V. Gregoriades

2009-11-26

7th Homework Sheet Analysis I (engl.)
 Winter Term 2009/10

(H7.1)

1. Prove that the function $f: \mathbb{R} \rightarrow \mathbb{R}$:

$$
f(x)= \begin{cases}x \cdot \exp (x), & \text { if } x \neq 0 \\ 1 & , \text { if } x=0\end{cases}
$$

is not continuous.
2. Prove that the function $f: \mathbb{R} \rightarrow \mathbb{R}$:

$$
f(x)= \begin{cases}\frac{\exp (x)-1}{x}, & \text { if } x \neq 0 \\ 1, & \text { if } x=0\end{cases}
$$

is continuous at 0 .
3. Assume that $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are continuous functions such that $f(q)=g(q)$ for all $q \in \mathbb{Q}$. Prove that $f(x)=g(x)$ for all $x \in \mathbb{R}$.

Decide whether the following statements are true or false. (In case where the statement is true you have to give a proof and in case where the statement is false you have to give a counterexample).

1. If $\left(q_{n}\right)_{n \in \mathbb{N}}$ is a sequence of rational numbers which converges to some $x \in \mathbb{R}$ then x is rational.
2. If $\left(y_{n}\right)_{n \in \mathbb{N}}$ is a sequence of irrational numbers which converges to some $y \in \mathbb{R}$ then y is irrational.
3. For all $y \in \mathbb{R}$ there is a sequence of rational numbers $\left(q_{n}\right)_{n \in \mathbb{N}}$ such that $q_{n} \rightarrow y$ and $q_{n}>q_{n+1}$ for all $n \in \mathbb{N}$.
4. For all $y \in \mathbb{R}$ there is a sequence of irrational numbers $\left(y_{n}\right)_{n \in \mathbb{N}}$ such that $y_{n} \rightarrow y$ and $y_{n}>y_{n+1}$ for all $n \in \mathbb{N}$.

(H7.3)

1. Assume that f_{1}, f_{2} are continuous functions from \mathbb{R} to \mathbb{R}. Define the function $f: \mathbb{R} \rightarrow \mathbb{R}$ as follows:
$f(x)=\left\{\begin{array}{l}f_{1}(x), \text { if } x \in \mathbb{Q} \\ f_{2}(x), \text { if } x \notin \mathbb{Q}\end{array}\right.$
Fix some $x_{0} \in \mathbb{R}$. Prove that f is continuous at x_{0} if and only if $f_{1}\left(x_{0}\right)=f_{2}\left(x_{0}\right)$.
2. Infer that the Dirichlet function $f: \mathbb{R} \rightarrow \mathbb{R}$:
$f(x)= \begin{cases}0, & \text { if } x \in \mathbb{Q} \\ 1, & \text { if } x \notin \mathbb{Q}\end{cases}$
is not continuous at any point $x \in \mathbb{R}$.
3. Let f, g be continuous functions from $[0,1]$ to \mathbb{R}. Assume that $f(0) \geq g(0)$ and that $f(1) \leq g(1)$. Prove that there is some $\xi \in[0,1]$ such that $f(\xi)=g(\xi)$.
