Fachbereich Mathematik Prof. Dr. W. Trebels Dr. V. Gregoriades

2009-11-26

7th Homework Sheet Analysis I (engl.) Winter Term 2009/10

(H7.1)

1. Prove that the function $f : \mathbb{R} \to \mathbb{R}$:

$$f(x) = \begin{cases} x \cdot \exp(x), & \text{if } x \neq 0\\ 1, & \text{if } x = 0 \end{cases}$$

is not continuous.

2. Prove that the function $f : \mathbb{R} \to \mathbb{R}$:

$$f(x) = \begin{cases} \frac{\exp(x) - 1}{x}, & \text{if } x \neq 0\\ 1, & \text{if } x = 0 \end{cases}$$

is continuous at 0.

3. Assume that $f, g : \mathbb{R} \to \mathbb{R}$ are continuous functions such that f(q) = g(q) for all $q \in \mathbb{Q}$. Prove that f(x) = g(x) for all $x \in \mathbb{R}$.

(H7.2)

Decide whether the following statements are true or false. (In case where the statement is true you have to give a proof and in case where the statement is false you have to give a counterexample).

- 1. If $(q_n)_{n \in \mathbb{N}}$ is a sequence of rational numbers which converges to some $x \in \mathbb{R}$ then x is rational.
- 2. If $(y_n)_{n \in \mathbb{N}}$ is a sequence of irrational numbers which converges to some $y \in \mathbb{R}$ then y is irrational.
- 3. For all $y \in \mathbb{R}$ there is a sequence of *rational* numbers $(q_n)_{n \in \mathbb{N}}$ such that $q_n \to y$ and $q_n > q_{n+1}$ for all $n \in \mathbb{N}$.

4. For all $y \in \mathbb{R}$ there is a sequence of *irrational* numbers $(y_n)_{n \in \mathbb{N}}$ such that $y_n \to y$ and $y_n > y_{n+1}$ for all $n \in \mathbb{N}$.

(H7.3)

1. Assume that f_1, f_2 are continuous functions from \mathbb{R} to \mathbb{R} . Define the function $f : \mathbb{R} \to \mathbb{R}$ as follows:

$$f(x) = \begin{cases} f_1(x), \text{ if } x \in \mathbb{Q} \\ f_2(x), \text{ if } x \notin \mathbb{Q} \end{cases}$$

Fix some $x_0 \in \mathbb{R}$. Prove that f is continuous at x_0 if and only if $f_1(x_0) = f_2(x_0)$.

2. Infer that the Dirichlet function $f : \mathbb{R} \to \mathbb{R}$:

$$f(x) = \begin{cases} 0, \text{ if } x \in \mathbb{Q} \\ 1, \text{ if } x \notin \mathbb{Q} \end{cases}$$

is not continuous at any point $x \in \mathbb{R}$.

3. Let f, g be continuous functions from [0, 1] to \mathbb{R} . Assume that $f(0) \ge g(0)$ and that $f(1) \le g(1)$. Prove that there is some $\xi \in [0, 1]$ such that $f(\xi) = g(\xi)$.