Fachbereich Mathematik
Prof. Dr. W. Trebels
Dr. V. Gregoriades

2009-11-19

6th Homework Sheet Analysis I (engl.)
 Winter Term 2009/10

(H6.1)

Find the radius of convergence ϱ of each of the following power series:

1. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \cdot z^{n}$,
2. $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} \cdot z^{2 n}$,
3. $\sum_{n=0}^{\infty} \frac{n^{n}}{n!} \cdot z^{n}$.
(H6.2)
4. Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence in \mathbb{C}. Prove that the radius of convergence of the power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ is the same with the radius of convergence of the series $\sum_{n=0}^{\infty}\left|a_{n}\right| z^{n}$.
5. Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence in \mathbb{C} such that $a_{n} \rightarrow a \neq 0$. Prove that the series $\sum_{n=0}^{\infty} n^{10} \cdot a_{n} \cdot z^{n}$ has radius of convergence which is equal to 1.
6. Find the result of the following infinite sum

$$
1+2 \cdot\left(-\frac{2}{5}\right)+3 \cdot\left(\frac{2}{5}\right)^{2}-4 \cdot\left(\frac{2}{5}\right)^{3}+\ldots+(n+1) \cdot(-1)^{n} \cdot\left(\frac{2}{5}\right)^{n}+\ldots
$$

Hint: You may use G6.3.

(H6.3)

Use a suitable Cauchy product of two series to find a power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ with radius of convergence $\varrho>0$ such that

$$
\sum_{n=0}^{\infty} a_{n} z^{n}=\frac{1}{3+2 z-z^{2}} \quad \text { for all } z \in \mathbb{C} \text { with }|z|<\varrho
$$

