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(H5.1)

1. Which of the following series are convergent?
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2. Using the Ratio Test prove that for every a € [0, —) the following series converges
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(H5.2)

Let (an)nen be a sequence of non-negative real numbers which is convergent to 0. Prove
oo

that there is a subsequence (ay, )nen such that the series Z ag, is convergent.
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Hint: For every n € N apply the definition of convergence taking ¢ = o



(H5.3)

1
—, if n = m* for some k € N,
Vvn
1. Define the sequence a,, =

— otherwise
n

o
Prove that the series Z a, converges.
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Remark: This exercise provides the example of a sequence (ay)nen for which the

series Z a, is convergent and yet it is not true that for some M > 0 we have that
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la,| < — for all n € N.
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2. Let (an)nen be a decreasing sequence of non-negative real numbers. Assume that the
o0

. n—oo
series E a, converges. Prove that n-a, — 0.
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Hint: Use the Cauchy’s Convergence Criterion.



