Fachbereich Mathematik Prof. Dr. W. Trebels Dr. V. Gregoriades

2009-11-05

4th Homework Sheet Analysis I (engl.) Winter Term 2009/10

(H4.1)

(a) Let $(a_n)_{n \in \mathbb{N}}$ be a sequence in \mathbb{C} and $a \in \mathbb{C}$. Let us repeat the following. The sequence $(a_n)_{n \in \mathbb{N}}$ is *convergent* to a exactly when

$$(\forall \varepsilon > 0) (\exists n_0 \in \mathbb{N}) (\forall n \ge n_0) [|a_n - a| < \varepsilon],$$

therefore the sequence $(a_n)_{n \in \mathbb{N}}$ is **not** convergent to a exactly when

$$(\exists \varepsilon_0 > 0) (\forall N \in \mathbb{N}) (\exists n \ge N) [|a_n - a| \ge \varepsilon_0].$$

Assume now that the sequence $(a_n)_{n \in \mathbb{N}}$ is **not** convergent a. Prove that there is some $\varepsilon_0 > 0$ and natural numbers $n_1 < n_2 < \ldots < n_k < \ldots$ such that $|a_{n_k} - a| \ge \varepsilon_0$ for all $k \in \mathbb{N}$.

- (b) Prove or reject the following statements:
 - (i) $(a_n)_{n \in \mathbb{N}}$ is convergent $\implies (a_n)_{n \in \mathbb{N}}$ has exactly one cluster point.
 - ii) $(a_n)_{n\in\mathbb{N}}$ has exactly one cluster point $\implies (a_n)_{n\in\mathbb{N}}$ is convergent.
 - (iii) $(a_n)_{n\in\mathbb{N}}$ has exactly one cluster point and is bounded $\Longrightarrow (a_n)_{n\in\mathbb{N}}$ is convergent.
 - (iv) $(a_n)_{n\in\mathbb{N}}$ is bounded $\implies (a_n)_{n\in\mathbb{N}}$ has at most two cluster points.

(H4.2)

Let $(a_n)_{n\in\mathbb{N}}$ and $(b_n)_{n\in\mathbb{N}}$ be bounded sequences in \mathbb{R} such that $a_n \geq 0$ and $b_n \geq 0$ for all $n \in \mathbb{N}$.

(a) Prove that

$$\limsup_{n \to \infty} (a_n \cdot b_n) \le \limsup_{n \to \infty} a_n \cdot \limsup_{n \to \infty} b_n.$$

Hint: follow the proof of G4.3-(a).

(b) Assume moreover that either $(a_n)_{n \in \mathbb{N}}$ is convergent to some $a \in \mathbb{R}$ or $(b_n)_{n \in \mathbb{N}}$ is convergent to some $b \in \mathbb{R}$. Prove that we have equality in (a) i.e.,

$$\limsup_{n \to \infty} (a_n \cdot b_n) = \limsup_{n \to \infty} a_n \cdot \limsup_{n \to \infty} b_n.$$

Remark. It is not true that in (a) we have equality in general. To see this put $a_n := 1 + (-1)^n$ and $b_n := 1 + (-1)^{n+1}$, $n \in \mathbb{N}$. Then both $(a_n)_{n \in \mathbb{N}}$ and $(b_n)_{n \in \mathbb{N}}$ are bounded and we have that $a_n, b_n \ge 0$ for all $n \in \mathbb{N}$. Moreover

$$\limsup_{n \to \infty} a_n = \limsup_{n \to \infty} b_n = 2,$$

but on the other hand

$$a_n \cdot b_n = 1 + (-1)^{n+1} + (-1)^n + (-1)^{2n+1} = 1 + 0 - 1 = 0,$$

for all $n \in \mathbb{N}$. Thus

$$\limsup_{n \to \infty} (a_n \cdot b_n) = 0 < 2 = \limsup_{n \to \infty} a_n \cdot \limsup_{n \to \infty} b_n.$$

(H4.3)

(a) Check whether the following series are convergent:

(i)
$$\sum_{n=1}^{\infty} ((-1)^n \cdot n),$$
 (ii) $\sum_{n=1}^{\infty} \frac{(3^{n+1})^2}{17 \cdot 2^{3n}}.$

(b) Calculate the sums of the following series:

(i)
$$\sum_{n=1}^{\infty} (\frac{1}{n} - \frac{1}{n+1}),$$
 (ii) $\sum_{n=0}^{\infty} \left[\sum_{k=0}^{n} \binom{n}{k} \left(\frac{1}{2}\right)^{n+k} \right].$