Fachbereich Mathematik
Prof. Dr. W. Trebels
Dr. V. Gregoriades

2009-11-05

4th Homework Sheet Analysis I (engl.) Winter Term 2009/10

(H4.1)
(a) Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence in \mathbb{C} and $a \in \mathbb{C}$. Let us repeat the following. The sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is convergent to a exactly when

$$
(\forall \varepsilon>0)\left(\exists n_{0} \in \mathbb{N}\right)\left(\forall n \geq n_{0}\right)\left[\left|a_{n}-a\right|<\varepsilon\right]
$$

therefore the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is not convergent to a exactly when

$$
\left(\exists \varepsilon_{0}>0\right)(\forall N \in \mathbb{N})(\exists n \geq N)\left[\left|a_{n}-a\right| \geq \varepsilon_{0}\right]
$$

Assume now that the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is not convergent a. Prove that there is some $\varepsilon_{0}>0$ and natural numbers $n_{1}<n_{2}<\ldots<n_{k}<\ldots$ such that $\left|a_{n_{k}}-a\right| \geq \varepsilon_{0}$ for all $k \in \mathbb{N}$.
(b) Prove or reject the following statements:
(i) $\left(a_{n}\right)_{n \in \mathbb{N}}$ is convergent $\Longrightarrow\left(a_{n}\right)_{n \in \mathbb{N}}$ has exactly one cluster point.
ii) $\left(a_{n}\right)_{n \in \mathbb{N}}$ has exactly one cluster point $\Longrightarrow\left(a_{n}\right)_{n \in \mathbb{N}}$ is convergent.
(iii) $\left(a_{n}\right)_{n \in \mathbb{N}}$ has exactly one cluster point and is bounded $\Longrightarrow\left(a_{n}\right)_{n \in \mathbb{N}}$ is convergent.
(iv) $\left(a_{n}\right)_{n \in \mathbb{N}}$ is bounded $\Longrightarrow\left(a_{n}\right)_{n \in \mathbb{N}}$ has at most two cluster points.

Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ and $\left(b_{n}\right)_{n \in \mathbb{N}}$ be bounded sequences in \mathbb{R} such that $a_{n} \geq 0$ and $b_{n} \geq 0$ for all $n \in \mathbb{N}$.
(a) Prove that

$$
\limsup _{n \rightarrow \infty}\left(a_{n} \cdot b_{n}\right) \leq \limsup _{n \rightarrow \infty} a_{n} \cdot \limsup _{n \rightarrow \infty} b_{n} .
$$

Hint: follow the proof of G4.3-(a).
(b) Assume moreover that either $\left(a_{n}\right)_{n \in \mathbb{N}}$ is convergent to some $a \in \mathbb{R}$ or $\left(b_{n}\right)_{n \in \mathbb{N}}$ is convergent to some $b \in \mathbb{R}$. Prove that we have equality in (a) i.e.,

$$
\limsup _{n \rightarrow \infty}\left(a_{n} \cdot b_{n}\right)=\limsup _{n \rightarrow \infty} a_{n} \cdot \limsup _{n \rightarrow \infty} b_{n} .
$$

Remark. It is not true that in (a) we have equality in general. To see this put $a_{n}:=1+(-1)^{n}$ and $b_{n}:=1+(-1)^{n+1}, n \in \mathbb{N}$. Then both $\left(a_{n}\right)_{n \in \mathbb{N}}$ and $\left(b_{n}\right)_{n \in \mathbb{N}}$ are bounded and we have that $a_{n}, b_{n} \geq 0$ for all $n \in \mathbb{N}$. Moreover

$$
\limsup _{n \rightarrow \infty} a_{n}=\limsup _{n \rightarrow \infty} b_{n}=2,
$$

but on the other hand

$$
a_{n} \cdot b_{n}=1+(-1)^{n+1}+(-1)^{n}+(-1)^{2 n+1}=1+0-1=0,
$$

for all $n \in \mathbb{N}$. Thus

$$
\limsup _{n \rightarrow \infty}\left(a_{n} \cdot b_{n}\right)=0<2=\limsup _{n \rightarrow \infty} a_{n} \cdot \limsup _{n \rightarrow \infty} b_{n}
$$

(H4.3)
(a) Check whether the following series are convergent:

$$
\text { (i) } \sum_{n=1}^{\infty}\left((-1)^{n} \cdot n\right), \quad \text { (ii) } \sum_{n=1}^{\infty} \frac{\left(3^{n+1}\right)^{2}}{17 \cdot 2^{3 n}} \text {. }
$$

(b) Calculate the sums of the following series:
(i) $\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)$,
(ii) $\sum_{n=0}^{\infty}\left[\sum_{k=0}^{n}\binom{n}{k}\left(\frac{1}{2}\right)^{n+k}\right]$.

