Fachbereich Mathematik
Prof. Dr. W. Trebels
Dr. V. Gregoriades

2009-10-29

3rd Homework sheet Analysis I (engl.)
 Winter Term 2009/10

(H3.1)

1. Prove using the definition that the following sequences are convergent to 0 .
(i) $a_{n}= \begin{cases}\frac{1}{2^{n}}, & \text { if } n \in \mathbb{N} \text { is even, } \\ \frac{1}{n^{2}}, & \text { if } n \in \mathbb{N} \text { is odd. }\end{cases}$
(ii) $b_{n}=\frac{1}{\sqrt{n}}, n \in \mathbb{N}$.
2. Check whether the following sequences are convergent and find the limits in the cases where these exist.
(i) $c_{n}=\frac{n}{n^{3}-n^{2}+3 n+1}, n \in \mathbb{N}$,
(ii) $d_{n}= \begin{cases}0, & \text { if } n \in \mathbb{N} \text { is even, } \\ 1, & \text { if } n \in \mathbb{N} \text { is odd. }\end{cases}$
(H3.2)
Let A, B be two non-empty sets of real numbers and let the function $f: A \rightarrow B$. The function f is increasing if it satisfies the property:

$$
x \leq y \Longrightarrow f(x) \leq f(y), \quad \text { for all } x, y \in A
$$

The function f is strictly increasing if it satisfies the property:

$$
x<y \Longrightarrow f(x)<f(y), \quad \text { for all } x, y \in A
$$

1. Prove that every strictly increasing function $f: \mathbb{R} \rightarrow \mathbb{R}$ is injective.
2. Give the example of a strictly increasing function $f:[0,1] \rightarrow[0,1]$ which is not surjective.
3. Suppose that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ is increasing. Define by recursion the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ as follows:

$$
a_{1}=1, \quad a_{n+1}=f\left(a_{n}\right), n \in \mathbb{N}
$$

(i) If $1 \leq f(1)$ prove that $a_{n} \leq a_{n+1}$, for all $n \in \mathbb{N}$.
(ii) Assume that $1 \leq f(1)$ and that $-2 \leq f(x) \leq 2$ for all $x \in \mathbb{R}$. Prove that the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is convergent to some $a \in[-2,2]$.

(H3.3)

1. Suppose that $\left(a_{n}\right)_{n \in \mathbb{N}}$ is a sequence of real numbers which is convergent to 1 . Define the sets

$$
A=\left\{n \in \mathbb{N} / a_{n}<1,0002\right\}, B=\left\{n \in \mathbb{N} / a_{n} \leq 0,9999\right\}
$$

Examine whether A and B are finite or infinite subsets of \mathbb{N}. (We regard the empty set as finite).
2. Give the example of two sequences $\left(b_{n}\right)_{n \in \mathbb{N}},\left(c_{n}\right)_{n \in \mathbb{N}}$ of real numbers such that $b_{n}<c_{n}$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} c_{n}$.
3. Prove that if $\left(z_{n}\right)_{n \in \mathbb{N}}$ is a sequence of complex numbers which is convergent to some $z \in \mathbb{C}$ then $\left|z_{n}\right| \rightarrow|z|$.
(Hint: Prove as in the case of the real numbers that $||z|-|w|| \leq|z-w|$ for all $z, w \in \mathbb{C})$.
4. Give the example of a sequence $\left(d_{n}\right)_{n \in \mathbb{N}}$ of real numbers such that $\left|d_{n}\right| \rightarrow 5$ but $\left(d_{n}\right)_{n \in \mathbb{N}}$ is not convergent to 5 .

