Fachbereich Mathematik Prof. Dr. W. Trebels Dr. V. Gregoriades

2009-10-29

3rd Homework sheet Analysis I (engl.) Winter Term 2009/10

(H3.1)

1. Prove using the definition that the following sequences are convergent to 0.

(i)
$$a_n = \begin{cases} \frac{1}{2^n}, & \text{if } n \in \mathbb{N} \text{ is even,} \\ \\ \frac{1}{n^2}, & \text{if } n \in \mathbb{N} \text{ is odd.} \end{cases}$$

(ii) $b_n = \frac{1}{\sqrt{n}}, n \in \mathbb{N}.$

2. Check whether the following sequences are convergent and find the limits in the cases where these exist.

(i)
$$c_n = \frac{n}{n^3 - n^2 + 3n + 1}, n \in \mathbb{N},$$

(ii) $d_n = \begin{cases} 0, & \text{if } n \in \mathbb{N} \text{ is even,} \\ 1, & \text{if } n \in \mathbb{N} \text{ is odd.} \end{cases}$

(H3.2)

Let A, B be two non-empty sets of real numbers and let the function $f : A \to B$. The function f is *increasing* if it satisfies the property:

$$x \le y \Longrightarrow f(x) \le f(y), \text{ for all } x, y \in A.$$

The function f is *strictly increasing* if it satisfies the property:

$$x < y \Longrightarrow f(x) < f(y), \text{ for all } x, y \in A.$$

- 1. Prove that every strictly increasing function $f : \mathbb{R} \to \mathbb{R}$ is injective.
- 2. Give the example of a strictly increasing function $f : [0,1] \rightarrow [0,1]$ which is not surjective.
- 3. Suppose that the function $f : \mathbb{R} \to \mathbb{R}$ is increasing. Define by recursion the sequence $(a_n)_{n \in \mathbb{N}}$ as follows:

$$a_1 = 1, \quad a_{n+1} = f(a_n), \ n \in \mathbb{N}.$$

(i) If $1 \leq f(1)$ prove that $a_n \leq a_{n+1}$, for all $n \in \mathbb{N}$. (ii) Assume that $1 \leq f(1)$ and that $-2 \leq f(x) \leq 2$ for all $x \in \mathbb{R}$. Prove that the sequence $(a_n)_{n \in \mathbb{N}}$ is convergent to some $a \in [-2, 2]$.

(H3.3)

1. Suppose that $(a_n)_{n\in\mathbb{N}}$ is a sequence of real numbers which is convergent to 1. Define the sets

 $A = \{ n \in \mathbb{N} \ / \ a_n < 1,0002 \}, \ B = \{ n \in \mathbb{N} \ / \ a_n \le 0,9999 \}.$

Examine whether A and B are finite or infinite subsets of \mathbb{N} . (We regard the empty set as finite).

- 2. Give the example of two sequences $(b_n)_{n \in \mathbb{N}}$, $(c_n)_{n \in \mathbb{N}}$ of real numbers such that $b_n < c_n$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} b_n = \lim_{n \to \infty} c_n$.
- 3. Prove that if $(z_n)_{n \in \mathbb{N}}$ is a sequence of complex numbers which is convergent to some $z \in \mathbb{C}$ then $|z_n| \to |z|$. (Hint: Prove as in the case of the real numbers that $||z| - |w|| \le |z - w|$ for all $z, w \in \mathbb{C}$).
- 4. Give the example of a sequence $(d_n)_{n \in \mathbb{N}}$ of **real** numbers such that $|d_n| \to 5$ but $(d_n)_{n \in \mathbb{N}}$ is not convergent to 5.