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(H1.1) (Cauchy-Schwarz Inequality)

(a) Prove that the following statement holds for all real numbers x1, x2, . . . , xn,
y1, y2, . . . , yn ∈ R.
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(b) Prove that for all a1, a2, . . . , an, b1, b2, . . . , bn ∈ R we have that the Cauchy-Schwarz
Inequality
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holds.

(H1.2)

Prove the following by induction. For all n ∈ N we have:

(a) 5n − 1 is divisible by 4.

(b) 32n

− 1 is divisible by 2n+2.

(c) The number An of subsets of a set with n elements is given by An = 2n.

(H1.3)

Prove that
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, for all n ∈ N.
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= 0 for all n ∈ N.
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