1st Home work Analysis I (engl.)
 Winter Term 2009/10

(H1.1) (Cauchy-Schwarz Inequality)

(a) Prove that the following statement holds for all real numbers $x_{1}, x_{2}, \ldots, x_{n}$, $y_{1}, y_{2}, \ldots, y_{n} \in \mathbb{R}$.

$$
\text { If } \sum_{k=1}^{n} x_{k}^{2}=\sum_{k=1}^{n} y_{k}^{2}=1, \quad \text { then } \quad \sum_{k=1}^{n} x_{k} y_{k} \leq 1
$$

(b) Prove that for all $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n} \in \mathbb{R}$ we have that the Cauchy-Schwarz Inequality

$$
\sum_{k=1}^{n} a_{k} b_{k} \leq \sqrt{a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}} \cdot \sqrt{b_{1}^{2}+b_{2}^{2}+\ldots+b_{n}^{2}}
$$

holds.

(H1.2)

Prove the following by induction. For all $n \in \mathbb{N}$ we have:
(a) $5^{n}-1$ is divisible by 4 .
(b) $3^{2^{n}}-1$ is divisible by 2^{n+2}.
(c) The number A_{n} of subsets of a set with n elements is given by $A_{n}=2^{n}$.
(H1.3)
Prove that
(a) $\sum_{k=1}^{n}(-1)^{k} k^{2}=(-1)^{n}\binom{n+1}{2}$, for all $n \in \mathbb{N}$.
(i) $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0$ for all $n \in \mathbb{N}$.

