Fachbereich Mathematik

15th Exercise Sheet Analysis I (engl.) Winter Term 2009/10

(G15.1)
We consider the function $f:[0,1] \rightarrow \mathbb{R}$ with $f(x)=x^{2}, x \in[0,1]$. Construct a sequence of step functions which converges uniformly to f on $[0,1]$, and use this to determine $\int_{0}^{1} f(x) \mathrm{d} x$.

Hint: Consider the following result from (T2.2):

$$
\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

(G15.2)

Let $a<b \in \mathbb{R}$. Prove that every monotone real function on the interval $[a, b] \subseteq \mathbb{R}$ is jump continuous.
(G15.3)
Suppose that the function $f:[-1,1] \rightarrow \mathbb{R}$ is continuous at all $x \neq 0$ and that for all continuous functions $\varphi:[-1,1] \rightarrow \mathbb{R}$ the integral $\int_{-1}^{1} f(x) \cdot \varphi(x) d x$ equals to 0 . Prove that $f(x)=0$ for all $x \neq 0$.

