Prof. Dr. W. Trebels
Dr. V. Gregoriades

14th Exercise Sheet Analysis I (engl.)
 Winter Term 2009/10

(G14.1)

1. For all $n \in \mathbb{N}$ define $f_{n}(x)=\frac{n^{2} x^{2}}{1+n^{2} x^{2}}, \quad x \in[-1,1]$. Examine whether the sequence of functions $\left(f_{n}\right)_{n \in \mathbb{N}}$ is pointwise convergent and if yes compute its limit. Is $\left(f_{n}\right)_{n \in \mathbb{N}}$ uniformly convergent?
2. For all $n \in \mathbb{N}$ let the function $f_{n}: \mathbb{R} \rightarrow \mathbb{R}: f_{n}(x)=\frac{\sin (\sqrt{n} \cdot x)}{n^{5}}$. Prove that
(i) the series $\sum_{n=1}^{\infty} f_{n}(x)$ converges for all $x \in \mathbb{R}$;
(ii) the function $f(x)=\sum_{n=1}^{\infty} f_{n}(x), x \in \mathbb{R}$ is 7 times differentiable and
(iii) the series $\sum_{n=1}^{\infty} f_{n}^{(8)}(x)$ does not converge uniformly.

Hint for (iii): Use the Cauchy Criterion for uniform convergence, (Theorem 4.4 Chap. 4).

(G14.2)

Prove Weierstrass' M-test (this is Theorem 4.9 Chap.4; recall $\left.\|g\|_{\infty}=\sup _{x \in D}|g(x)|\right)$:
Let $D \subseteq \mathbb{R}$ and let $f_{n}: D \rightarrow \mathbb{K}, n \in \mathbb{N}$, be functions such that $\sum_{n=1}^{\infty}\left\|f_{n}\right\|_{\infty}$ converges. Then the series of functions $\sum_{n=1}^{\infty} f_{n}$ converges uniformly on D.

(G14.3)

Let $\sum_{n=0}^{\infty} a_{n} x^{n}$ be a power series with radius of convergence $\rho>0$.

1. Prove that the term-by-term differentiated power series $\sum_{n=1}^{\infty} n a_{n} x^{n-1}$ has the same radius of convergence ρ. (This is Lemma 4.13 Chap. 4).

Hint. Recall from H4.2 that for all bounded sequences of real numbers $\left(a_{n}\right)_{n \in \mathbb{N}}$, $\left(b_{n}\right)_{n \in \mathbb{N}}$ if $\left(a_{n}\right)_{n \in \mathbb{N}}$ is convergent then $\lim \sup _{n \in \infty}\left(a_{n} \cdot b_{n}\right)=\left(\lim _{n \rightarrow \infty} a_{n}\right) \cdot\left(\lim \sup _{n \rightarrow \infty} b_{n}\right)$.
2. Prove that the function $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n},|x|<\rho$ is infinitely many times differentiable at all $x \in(-\rho, \rho)$.

