Fachbereich Mathematik Prof. Dr. W. Trebels Dr. V. Gregoriades

14th Exercise Sheet Analysis I (engl.) Winter Term 2009/10

(G14.1)

- 1. For all $n \in \mathbb{N}$ define $f_n(x) = \frac{n^2 x^2}{1 + n^2 x^2}$, $x \in [-1, 1]$. Examine whether the sequence of functions $(f_n)_{n \in \mathbb{N}}$ is pointwise convergent and if yes compute its limit. Is $(f_n)_{n \in \mathbb{N}}$ uniformly convergent?
- 2. For all $n \in \mathbb{N}$ let the function $f_n : \mathbb{R} \to \mathbb{R} : f_n(x) = \frac{\sin(\sqrt{n} \cdot x)}{n^5}$. Prove that (i) the series $\sum_{n=1}^{\infty} f_n(x)$ converges for all $x \in \mathbb{R}$;
 - (ii) the function $f(x) = \sum_{n=1}^{\infty} f_n(x), x \in \mathbb{R}$ is 7 times differentiable and
 - (iii) the series $\sum_{n=1}^{\infty} f_n^{(8)}(x)$ does not converge uniformly.

Hint for (iii): Use the Cauchy Criterion for uniform convergence, (Theorem 4.4 Chap. 4).

(G14.2)

Prove Weierstrass' *M*-test (this is Theorem 4.9 Chap.4; recall $||g||_{\infty} = \sup_{x \in D} |g(x)|$):

Let $D \subseteq \mathbb{R}$ and let $f_n : D \to \mathbb{K}$, $n \in \mathbb{N}$, be functions such that $\sum_{n=1}^{\infty} ||f_n||_{\infty}$ converges. Then the series of functions $\sum_{n=1}^{\infty} f_n$ converges uniformly on D.

(G14.3)

Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series with radius of convergence $\rho > 0$.

1. Prove that the term-by-term differentiated power series $\sum_{n=1}^{\infty} na_n x^{n-1}$ has the same radius of convergence ρ . (This is Lemma 4.13 Chap. 4). *Hint* — Becall from H4.2 that for all bounded sequences of real numbers (a_n) — a_n

Hint. Recall from H4.2 that for all bounded sequences of real numbers $(a_n)_{n \in \mathbb{N}}$, $(b_n)_{n \in \mathbb{N}}$ if $(a_n)_{n \in \mathbb{N}}$ is convergent then $\limsup_{n \in \infty} (a_n \cdot b_n) = (\lim_{n \to \infty} a_n) \cdot (\limsup_{n \to \infty} b_n)$.

2. Prove that the function $f(x) = \sum_{n=0}^{\infty} a_n x^n$, $|x| < \rho$ is infinitely many times differentiable at all $x \in (-\rho, \rho)$.