Fachbereich Mathematik

13th Exercise Sheet Analysis I (engl.)
 Winter Term 2009/10

(G13.1)

Determine an approximate value of $\sqrt{2}=\frac{7}{5}\left(1-\frac{1}{50}\right)^{-1 / 2}$ via an appropriate Taylor polynomial such that the error is smaller than or equal to 10^{-5}.

(G13.2)

1. Compute the limit

$$
\lim _{x \rightarrow 0^{+}} x \cdot e^{1 / x}
$$

2. Define $f(x)=\frac{x}{x^{2}+1}, \quad x \in \mathbb{R}$. Find the intervals I of \mathbb{R} for which the function f restricted on I is convex.
3. Assume that we have a function $f: \mathbb{R} \rightarrow \mathbb{R}$ which has the property

$$
\frac{f(y)-f(x)}{y-x} \leq \frac{f(z)-f(x)}{z-x} .
$$

for all $x<y<z$. Prove that f is convex.

(G13.3)

Define $f: \mathbb{R} \backslash\{1\} \rightarrow \mathbb{R}: f(x)=\frac{1}{1-x}$. For each $a \in \mathbb{R} \backslash\{1\}$ and $n \in \mathbb{N}$ determine the $n^{\text {th }}$-Taylor polynomial $T_{n} f$ of f near a.

