12th Exercise Sheet Analysis I (engl.)
 Winter Term 2009/10

(G12.1)

Decide where the following functions are differentiable, and find the derivative where it exists.

1. The function $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=x^{2} \mathrm{e}^{\sin x}$.
2. The function $h(x)=x^{x}, x>0$.
3. The function $g: \mathbb{R} \rightarrow \mathbb{R}$ is defined by

$$
g(x):= \begin{cases}x^{2} \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Is g^{\prime} continuous in the points where g is differentiable?

(G12.2)

1. (a) Prove that $\sqrt{1+x}<1+\frac{x}{2}, x>0$.
(b) Prove that $e^{a}(b-a)<e^{b}-e^{a}<e^{b}(b-a)$ if $a<b$.
2. Let $f:[0,1] \rightarrow \mathbb{R}$ be a differentiable function and assume that $f(1)=0$. Prove that there is some $\xi \in(0,1)$ such that $\xi \cdot f^{\prime}(\xi)+f(\xi)=0$.

(G12.3)

Let $f:[a, b] \rightarrow \mathbb{R}$ be differentiable and such that

$$
|f(x)|+\left|f^{\prime}(x)\right| \neq 0
$$

for all $x \in[a, b]$. Prove that f has only finitely many zero's, i.e. that there are only finitely many $x \in[a, b]$ s.t. $f(x)=0$.

