Fachbereich Mathematik Prof. Dr. W. Trebels Dr. V. Gregoriades

2010-01-21

12th Exercise Sheet Analysis I (engl.) Winter Term 2009/10

(G12.1)

Decide where the following functions are differentiable, and find the derivative where it exists.

- 1. The function $f : \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x^2 e^{\sin x}$.
- 2. The function $h(x) = x^x$, x > 0.
- 3. The function $g : \mathbb{R} \to \mathbb{R}$ is defined by

$$g(x) := \begin{cases} x^2 \sin(\frac{1}{x}) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

Is g' continuous in the points where g is differentiable?

(G12.2)

- 1. (a) Prove that $\sqrt{1+x} < 1 + \frac{x}{2}$, x > 0. (b) Prove that $e^{a}(b-a) < e^{b} - e^{a} < e^{b}(b-a)$ if a < b.
- 2. Let $f: [0,1] \to \mathbb{R}$ be a differentiable function and assume that f(1) = 0. Prove that there is some $\xi \in (0,1)$ such that $\xi \cdot f'(\xi) + f(\xi) = 0$.

(G12.3)

Let $f : [a, b] \to \mathbb{R}$ be differentiable and such that

$$|f(x)| + |f'(x)| \neq 0$$

for all $x \in [a, b]$. Prove that f has only finitely many zero's, i.e. that there are only finitely many $x \in [a, b]$ s.t. f(x) = 0.