11th Exercise Sheet Analysis I (engl.)
 Winter Term 2009/10

(G11.1)

Recall the definitions of the hyperbolic cosine cosh and of the hyperbolic sine sinh:

$$
\cosh (z)=\frac{1}{2} \cdot\left(e^{z}+e^{-z}\right), \quad z \in \mathbb{C}, \quad \sinh (z)=\frac{1}{2} \cdot\left(e^{z}-e^{-z}\right), \quad z \in \mathbb{C}
$$

Prove that

$$
\cos \left(z+\frac{\pi}{2}\right)=-\sin z, \quad z \in \mathbb{C}
$$

and that

$$
\cosh ^{2} z-\sinh ^{2} z=1, \quad z \in \mathbb{C}
$$

(G11.2)

1. Calculate $\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} \mathrm{i}\right)^{517}$ and sketch the result in the complex plane.
2. Sketch the 5 th roots of unity in the complex plane.

(G11.3)

Let M be a bounded subset of \mathbb{R} and let $f: M \rightarrow \mathbb{R}$ be a uniformly continuous function. Prove that there exists a unique continuous extension $F: \bar{M} \rightarrow \mathbb{R}$ of f on M i.e., $F(x)=f(x)$ for all $x \in M$.
(This is direction (ii) \Longrightarrow (i) of Theorem 3.16 Chap. 3 of the script).

