8th Exercise Sheet Analysis I (engl.)
 Winter Term 2009/10

(G8.1)

1. Find the boundary of the following sets:

$$
[0, \sqrt{2}), \quad(0,1) \cup(\sqrt{2}, \sqrt{3}), \quad[100, \infty), \mathbb{Q}, \mathbb{R} .
$$

2. Which of the previous sets are closed?
3. Find a simpler form for the following sets:

$$
\bigcup_{n \in \mathbb{N}}\left[0,1-\frac{1}{n}\right], \quad \bigcup_{n \in \mathbb{N}}\left[\frac{1}{n}, 1-\frac{1}{n}\right), \quad \bigcap_{n \in \mathbb{N}}\left(0, \frac{1}{n}\right], \bigcap_{n \in \mathbb{N}}\left[-3,-\left(1+\frac{1}{n}\right)^{n}\right] .
$$

(G8.2)

1. For $r>0$ and $x \in \mathbb{R}^{n}$ consider the open ball

$$
B_{r}(x)=\left\{y \in \mathbb{R}^{n}:|y-x|<r\right\} .
$$

Prove that $B_{r}(x)$ is an open subset of \mathbb{R}^{n}.
2. Let $M \subseteq \mathbb{R}^{n}$. Prove that a point $x \in \mathbb{R}^{n}$ belongs to M° (i.e., x is interior point of $M)$ if and only if there is some $r>0$ such that $B_{r}(x) \subseteq M$.
3. Infer that for all $M \subseteq \mathbb{R}^{n}$ we have that

$$
M^{\circ}=\bigcup_{\substack{V \subseteq M \\ V \text { open }}} V
$$

(G8.3)
Prove that the only subsets of \mathbb{R} which are open and closed are \emptyset and \mathbb{R}.
Hint. You may use the following result from Real Analysis. If A, B are non-empty closed subsets of \mathbb{R} such that $A \cap B=\emptyset$ then there exists a continuous function $f: \mathbb{R} \rightarrow[0,1]$ such that

$$
x \in A \Longleftrightarrow f(x)=0, \quad x \in B \Longleftrightarrow f(x)=1 .
$$

