Fachbereich Mathematik Prof. Dr. W. Trebels Dr. V. Gregoriades

2009-11-19

6th Exercise Sheet Analysis I (engl.) Winter Term 2009/10

(G6.1)

Find the radius of convergence for each of the following power series:

$$1. \sum_{n=1}^{\infty} n \cdot z^{n-1},$$

2.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{3^n} \cdot z^{2n}$$
,

3.
$$\sum_{n=0}^{\infty} \frac{n}{(n+1)^2} \cdot z^n$$
.

(G6.2)

Let $(a_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{C} and assume that the power series $\sum_{k=0}^{\infty}a_{2k}z^{2k}$, $\sum_{k=0}^{\infty}a_{2k+1}z^{2k+1}$ are convergent with radii of convergence R_1, R_2 respectively. Prove that the power series $\sum_{n=0}^{\infty}a_nz^n$ has radius of convergence $\min\{R_1, R_2\}$.

(G6.3)

Use a suitable Cauchy product of two series to find a power series $\sum_{n=0}^{\infty} a_n z^n$ with radius of convergence $\varrho > 0$ such that

$$\sum_{n=0}^{\infty} a_n z^n = \frac{1}{(1+z)^2} \quad \text{for all } z \in \mathbb{C} \text{ with } |z| < \varrho.$$