Fachbereich Mathematik
Prof. Dr. W. Trebels
Dr. V. Gregoriades

2009-11-19

6th Exercise Sheet Analysis I (engl.)
 Winter Term 2009/10

(G6.1)

Find the radius of convergence for each of the following power series:

1. $\sum_{n=1}^{\infty} n \cdot z^{n-1}$,
2. $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{3^{n}} \cdot z^{2 n}$,
3. $\sum_{n=0}^{\infty} \frac{n}{(n+1)^{2}} \cdot z^{n}$.
(G6.2)
Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence in \mathbb{C} and assume that the power series $\sum_{k=0}^{\infty} a_{2 k} z^{2 k}, \sum_{k=0}^{\infty} a_{2 k+1} z^{2 k+1}$ are convergent with radii of convergence R_{1}, R_{2} respectively. Prove that the power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ has radius of convergence $\min \left\{R_{1}, R_{2}\right\}$.

(G6.3)

Use a suitable Cauchy product of two series to find a power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ with radius of convergence $\varrho>0$ such that

$$
\sum_{n=0}^{\infty} a_{n} z^{n}=\frac{1}{(1+z)^{2}} \quad \text { for all } z \in \mathbb{C} \text { with }|z|<\varrho
$$

